Audio plugin host https://kx.studio/carla
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1461 lines
52KB

  1. /*
  2. * Carla FluidSynth Plugin
  3. * Copyright (C) 2011-2013 Filipe Coelho <falktx@falktx.com>
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation; either version 2 of
  8. * the License, or any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * For a full copy of the GNU General Public License see the GPL.txt file
  16. */
  17. #include "CarlaPluginInternal.hpp"
  18. #ifdef WANT_FLUIDSYNTH
  19. #include <fluidsynth.h>
  20. #define FLUIDSYNTH_VERSION_NEW_API (FLUIDSYNTH_VERSION_MAJOR >= 1 && FLUIDSYNTH_VERSION_MINOR >= 1 && FLUIDSYNTH_VERSION_MICRO >= 4)
  21. CARLA_BACKEND_START_NAMESPACE
  22. class FluidSynthPlugin : public CarlaPlugin
  23. {
  24. public:
  25. FluidSynthPlugin(CarlaEngine* const engine, const unsigned int id, const bool use16Outs)
  26. : CarlaPlugin(engine, id),
  27. kUses16Outs(use16Outs),
  28. fSettings(nullptr),
  29. fSynth(nullptr),
  30. fSynthId(-1),
  31. fAudio16Buffers(nullptr)
  32. {
  33. carla_debug("FluidSynthPlugin::FluidSynthPlugin(%p, %i, %s)", engine, id, bool2str(use16Outs));
  34. // create settings
  35. fSettings = new_fluid_settings();
  36. // define settings
  37. fluid_settings_setint(fSettings, "synth.audio-channels", use16Outs ? 16 : 1);
  38. fluid_settings_setint(fSettings, "synth.audio-groups", use16Outs ? 16 : 1);
  39. fluid_settings_setnum(fSettings, "synth.sample-rate", kData->engine->getSampleRate());
  40. fluid_settings_setint(fSettings, "synth.threadsafe-api ", 0);
  41. // create synth
  42. fSynth = new_fluid_synth(fSettings);
  43. #ifdef FLUIDSYNTH_VERSION_NEW_API
  44. fluid_synth_set_sample_rate(fSynth, kData->engine->getSampleRate());
  45. #endif
  46. // set default values
  47. fluid_synth_set_reverb_on(fSynth, 0);
  48. fluid_synth_set_reverb(fSynth, FLUID_REVERB_DEFAULT_ROOMSIZE, FLUID_REVERB_DEFAULT_DAMP, FLUID_REVERB_DEFAULT_WIDTH, FLUID_REVERB_DEFAULT_LEVEL);
  49. fluid_synth_set_chorus_on(fSynth, 0);
  50. fluid_synth_set_chorus(fSynth, FLUID_CHORUS_DEFAULT_N, FLUID_CHORUS_DEFAULT_LEVEL, FLUID_CHORUS_DEFAULT_SPEED, FLUID_CHORUS_DEFAULT_DEPTH, FLUID_CHORUS_DEFAULT_TYPE);
  51. fluid_synth_set_polyphony(fSynth, 64);
  52. for (int i=0; i < 16; i++)
  53. fluid_synth_set_interp_method(fSynth, i, FLUID_INTERP_DEFAULT);
  54. }
  55. ~FluidSynthPlugin()
  56. {
  57. carla_debug("FluidSynthPlugin::~FluidSynthPlugin()");
  58. delete_fluid_synth(fSynth);
  59. delete_fluid_settings(fSettings);
  60. deleteBuffers();
  61. }
  62. // -------------------------------------------------------------------
  63. // Information (base)
  64. PluginType type() const
  65. {
  66. return PLUGIN_SF2;
  67. }
  68. PluginCategory category() const
  69. {
  70. return PLUGIN_CATEGORY_SYNTH;
  71. }
  72. // -------------------------------------------------------------------
  73. // Information (count)
  74. uint32_t parameterScalePointCount(const uint32_t parameterId) const
  75. {
  76. CARLA_ASSERT(parameterId < kData->param.count);
  77. switch (parameterId)
  78. {
  79. case FluidSynthChorusType:
  80. return 2;
  81. case FluidSynthInterpolation:
  82. return 4;
  83. default:
  84. return 0;
  85. }
  86. }
  87. // -------------------------------------------------------------------
  88. // Information (per-plugin data)
  89. float getParameterValue(const uint32_t parameterId)
  90. {
  91. CARLA_ASSERT(parameterId < kData->param.count);
  92. return fParamBuffers[parameterId];
  93. }
  94. float getParameterScalePointValue(const uint32_t parameterId, const uint32_t scalePointId)
  95. {
  96. CARLA_ASSERT(parameterId < kData->param.count);
  97. CARLA_ASSERT(scalePointId < parameterScalePointCount(parameterId));
  98. switch (parameterId)
  99. {
  100. case FluidSynthChorusType:
  101. switch (scalePointId)
  102. {
  103. case 0:
  104. return FLUID_CHORUS_MOD_SINE;
  105. case 1:
  106. return FLUID_CHORUS_MOD_TRIANGLE;
  107. default:
  108. return FLUID_CHORUS_DEFAULT_TYPE;
  109. }
  110. case FluidSynthInterpolation:
  111. switch (scalePointId)
  112. {
  113. case 0:
  114. return FLUID_INTERP_NONE;
  115. case 1:
  116. return FLUID_INTERP_LINEAR;
  117. case 2:
  118. return FLUID_INTERP_4THORDER;
  119. case 3:
  120. return FLUID_INTERP_7THORDER;
  121. default:
  122. return FLUID_INTERP_DEFAULT;
  123. }
  124. default:
  125. return 0.0f;
  126. }
  127. }
  128. void getLabel(char* const strBuf)
  129. {
  130. if (fLabel.isNotEmpty())
  131. std::strncpy(strBuf, (const char*)fLabel, STR_MAX);
  132. else
  133. CarlaPlugin::getLabel(strBuf);
  134. }
  135. void getMaker(char* const strBuf)
  136. {
  137. std::strncpy(strBuf, "FluidSynth SF2 engine", STR_MAX);
  138. }
  139. void getCopyright(char* const strBuf)
  140. {
  141. std::strncpy(strBuf, "GNU GPL v2+", STR_MAX);
  142. }
  143. void getRealName(char* const strBuf)
  144. {
  145. getLabel(strBuf);
  146. }
  147. void getParameterName(const uint32_t parameterId, char* const strBuf)
  148. {
  149. CARLA_ASSERT(parameterId < kData->param.count);
  150. switch (parameterId)
  151. {
  152. case FluidSynthReverbOnOff:
  153. std::strncpy(strBuf, "Reverb On/Off", STR_MAX);
  154. break;
  155. case FluidSynthReverbRoomSize:
  156. std::strncpy(strBuf, "Reverb Room Size", STR_MAX);
  157. break;
  158. case FluidSynthReverbDamp:
  159. std::strncpy(strBuf, "Reverb Damp", STR_MAX);
  160. break;
  161. case FluidSynthReverbLevel:
  162. std::strncpy(strBuf, "Reverb Level", STR_MAX);
  163. break;
  164. case FluidSynthReverbWidth:
  165. std::strncpy(strBuf, "Reverb Width", STR_MAX);
  166. break;
  167. case FluidSynthChorusOnOff:
  168. std::strncpy(strBuf, "Chorus On/Off", STR_MAX);
  169. break;
  170. case FluidSynthChorusNr:
  171. std::strncpy(strBuf, "Chorus Voice Count", STR_MAX);
  172. break;
  173. case FluidSynthChorusLevel:
  174. std::strncpy(strBuf, "Chorus Level", STR_MAX);
  175. break;
  176. case FluidSynthChorusSpeedHz:
  177. std::strncpy(strBuf, "Chorus Speed", STR_MAX);
  178. break;
  179. case FluidSynthChorusDepthMs:
  180. std::strncpy(strBuf, "Chorus Depth", STR_MAX);
  181. break;
  182. case FluidSynthChorusType:
  183. std::strncpy(strBuf, "Chorus Type", STR_MAX);
  184. break;
  185. case FluidSynthPolyphony:
  186. std::strncpy(strBuf, "Polyphony", STR_MAX);
  187. break;
  188. case FluidSynthInterpolation:
  189. std::strncpy(strBuf, "Interpolation", STR_MAX);
  190. break;
  191. case FluidSynthVoiceCount:
  192. std::strncpy(strBuf, "Voice Count", STR_MAX);
  193. break;
  194. default:
  195. CarlaPlugin::getParameterName(parameterId, strBuf);
  196. break;
  197. }
  198. }
  199. void getParameterUnit(const uint32_t parameterId, char* const strBuf)
  200. {
  201. CARLA_ASSERT(parameterId < kData->param.count);
  202. switch (parameterId)
  203. {
  204. case FluidSynthChorusSpeedHz:
  205. std::strncpy(strBuf, "Hz", STR_MAX);
  206. break;
  207. case FluidSynthChorusDepthMs:
  208. std::strncpy(strBuf, "ms", STR_MAX);
  209. break;
  210. default:
  211. CarlaPlugin::getParameterUnit(parameterId, strBuf);
  212. break;
  213. }
  214. }
  215. void getParameterScalePointLabel(const uint32_t parameterId, const uint32_t scalePointId, char* const strBuf)
  216. {
  217. CARLA_ASSERT(parameterId < kData->param.count);
  218. CARLA_ASSERT(scalePointId < parameterScalePointCount(parameterId));
  219. switch (parameterId)
  220. {
  221. case FluidSynthChorusType:
  222. switch (scalePointId)
  223. {
  224. case 0:
  225. std::strncpy(strBuf, "Sine wave", STR_MAX);
  226. return;
  227. case 1:
  228. std::strncpy(strBuf, "Triangle wave", STR_MAX);
  229. return;
  230. }
  231. case FluidSynthInterpolation:
  232. switch (scalePointId)
  233. {
  234. case 0:
  235. std::strncpy(strBuf, "None", STR_MAX);
  236. return;
  237. case 1:
  238. std::strncpy(strBuf, "Straight-line", STR_MAX);
  239. return;
  240. case 2:
  241. std::strncpy(strBuf, "Fourth-order", STR_MAX);
  242. return;
  243. case 3:
  244. std::strncpy(strBuf, "Seventh-order", STR_MAX);
  245. return;
  246. }
  247. }
  248. CarlaPlugin::getParameterScalePointLabel(parameterId, scalePointId, strBuf);
  249. }
  250. // -------------------------------------------------------------------
  251. // Set data (plugin-specific stuff)
  252. void setParameterValue(const uint32_t parameterId, const float value, const bool sendGui, const bool sendOsc, const bool sendCallback)
  253. {
  254. CARLA_ASSERT(parameterId < kData->param.count);
  255. const float fixedValue = kData->param.fixValue(parameterId, value);
  256. fParamBuffers[parameterId] = fixedValue;
  257. {
  258. const ScopedProcessLocker spl(this, (sendGui || sendOsc || sendCallback));
  259. switch (parameterId)
  260. {
  261. case FluidSynthReverbOnOff:
  262. fluid_synth_set_reverb_on(fSynth, (fixedValue > 0.5f) ? 1 : 0);
  263. break;
  264. case FluidSynthReverbRoomSize:
  265. case FluidSynthReverbDamp:
  266. case FluidSynthReverbLevel:
  267. case FluidSynthReverbWidth:
  268. fluid_synth_set_reverb(fSynth, fParamBuffers[FluidSynthReverbRoomSize], fParamBuffers[FluidSynthReverbDamp], fParamBuffers[FluidSynthReverbWidth], fParamBuffers[FluidSynthReverbLevel]);
  269. break;
  270. case FluidSynthChorusOnOff:
  271. fluid_synth_set_chorus_on(fSynth, (value > 0.5f) ? 1 : 0);
  272. break;
  273. case FluidSynthChorusNr:
  274. case FluidSynthChorusLevel:
  275. case FluidSynthChorusSpeedHz:
  276. case FluidSynthChorusDepthMs:
  277. case FluidSynthChorusType:
  278. fluid_synth_set_chorus(fSynth, fParamBuffers[FluidSynthChorusNr], fParamBuffers[FluidSynthChorusLevel], fParamBuffers[FluidSynthChorusSpeedHz], fParamBuffers[FluidSynthChorusDepthMs], fParamBuffers[FluidSynthChorusType]);
  279. break;
  280. case FluidSynthPolyphony:
  281. fluid_synth_set_polyphony(fSynth, value);
  282. break;
  283. case FluidSynthInterpolation:
  284. for (int i=0; i < 16; i++)
  285. fluid_synth_set_interp_method(fSynth, i, value);
  286. break;
  287. default:
  288. break;
  289. }
  290. }
  291. CarlaPlugin::setParameterValue(parameterId, value, sendGui, sendOsc, sendCallback);
  292. }
  293. void setMidiProgram(int32_t index, const bool sendGui, const bool sendOsc, const bool sendCallback)
  294. {
  295. CARLA_ASSERT(fSynth != nullptr);
  296. CARLA_ASSERT(index >= -1 && index < static_cast<int32_t>(kData->midiprog.count));
  297. if (index < -1)
  298. index = -1;
  299. else if (index > static_cast<int32_t>(kData->midiprog.count))
  300. return;
  301. if (kData->ctrlChannel < 0 || kData->ctrlChannel >= 16)
  302. return;
  303. if (index >= 0)
  304. {
  305. const uint32_t bank = kData->midiprog.data[index].bank;
  306. const uint32_t program = kData->midiprog.data[index].program;
  307. const ScopedProcessLocker spl(this, (sendGui || sendOsc || sendCallback));
  308. fluid_synth_program_select(fSynth, kData->ctrlChannel, fSynthId, bank, program);
  309. }
  310. CarlaPlugin::setMidiProgram(index, sendGui, sendOsc, sendCallback);
  311. }
  312. // -------------------------------------------------------------------
  313. // Plugin state
  314. void reload()
  315. {
  316. carla_debug("FluidSynthPlugin::reload() - start");
  317. CARLA_ASSERT(kData->engine != nullptr);
  318. CARLA_ASSERT(fSynth != nullptr);
  319. const ProcessMode processMode(kData->engine->getProccessMode());
  320. // Safely disable plugin for reload
  321. const ScopedDisabler sd(this);
  322. deleteBuffers();
  323. uint32_t aOuts, params, j;
  324. aOuts = kUses16Outs ? 32 : 2;
  325. params = FluidSynthParametersMax;
  326. kData->audioOut.createNew(aOuts);
  327. kData->param.createNew(params);
  328. const int portNameSize = kData->engine->maxPortNameSize();
  329. CarlaString portName;
  330. // ---------------------------------------
  331. // Audio Outputs
  332. if (kUses16Outs)
  333. {
  334. for (j=0; j < 32; j++)
  335. {
  336. portName.clear();
  337. if (processMode == PROCESS_MODE_SINGLE_CLIENT)
  338. {
  339. portName = fName;
  340. portName += ":";
  341. }
  342. portName += "out-";
  343. if ((j+2)/2 < 9)
  344. portName += "0";
  345. portName += CarlaString((j+2)/2);
  346. if (j % 2 == 0)
  347. portName += "L";
  348. else
  349. portName += "R";
  350. portName.truncate(portNameSize);
  351. kData->audioOut.ports[j].port = (CarlaEngineAudioPort*)kData->client->addPort(kEnginePortTypeAudio, portName, false);
  352. kData->audioOut.ports[j].rindex = j;
  353. }
  354. fAudio16Buffers = new float*[aOuts];
  355. for (j=0; j < aOuts; j++)
  356. fAudio16Buffers[j] = nullptr;
  357. }
  358. else
  359. {
  360. // out-left
  361. portName.clear();
  362. if (processMode == PROCESS_MODE_SINGLE_CLIENT)
  363. {
  364. portName = fName;
  365. portName += ":";
  366. }
  367. portName += "out-left";
  368. portName.truncate(portNameSize);
  369. kData->audioOut.ports[0].port = (CarlaEngineAudioPort*)kData->client->addPort(kEnginePortTypeAudio, portName, false);
  370. kData->audioOut.ports[0].rindex = 0;
  371. // out-right
  372. portName.clear();
  373. if (processMode == PROCESS_MODE_SINGLE_CLIENT)
  374. {
  375. portName = fName;
  376. portName += ":";
  377. }
  378. portName += "out-right";
  379. portName.truncate(portNameSize);
  380. kData->audioOut.ports[1].port = (CarlaEngineAudioPort*)kData->client->addPort(kEnginePortTypeAudio, portName, false);
  381. kData->audioOut.ports[1].rindex = 1;
  382. }
  383. // ---------------------------------------
  384. // Event Input
  385. {
  386. portName.clear();
  387. if (processMode == PROCESS_MODE_SINGLE_CLIENT)
  388. {
  389. portName = fName;
  390. portName += ":";
  391. }
  392. portName += "event-in";
  393. portName.truncate(portNameSize);
  394. kData->event.portIn = (CarlaEngineEventPort*)kData->client->addPort(kEnginePortTypeEvent, portName, true);
  395. }
  396. // ---------------------------------------
  397. // Event Output
  398. {
  399. portName.clear();
  400. if (processMode == PROCESS_MODE_SINGLE_CLIENT)
  401. {
  402. portName = fName;
  403. portName += ":";
  404. }
  405. portName += "event-out";
  406. portName.truncate(portNameSize);
  407. kData->event.portOut = (CarlaEngineEventPort*)kData->client->addPort(kEnginePortTypeEvent, portName, false);
  408. }
  409. // ----------------------
  410. j = FluidSynthReverbOnOff;
  411. kData->param.data[j].index = j;
  412. kData->param.data[j].rindex = j;
  413. kData->param.data[j].type = PARAMETER_INPUT;
  414. kData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_AUTOMABLE | PARAMETER_IS_BOOLEAN;
  415. kData->param.data[j].midiChannel = 0;
  416. kData->param.data[j].midiCC = -1;
  417. kData->param.ranges[j].min = 0.0f;
  418. kData->param.ranges[j].max = 1.0f;
  419. kData->param.ranges[j].def = 0.0f; // off
  420. kData->param.ranges[j].step = 1.0f;
  421. kData->param.ranges[j].stepSmall = 1.0f;
  422. kData->param.ranges[j].stepLarge = 1.0f;
  423. fParamBuffers[j] = kData->param.ranges[j].def;
  424. // ----------------------
  425. j = FluidSynthReverbRoomSize;
  426. kData->param.data[j].index = j;
  427. kData->param.data[j].rindex = j;
  428. kData->param.data[j].type = PARAMETER_INPUT;
  429. kData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_AUTOMABLE;
  430. kData->param.data[j].midiChannel = 0;
  431. kData->param.data[j].midiCC = -1;
  432. kData->param.ranges[j].min = 0.0f;
  433. kData->param.ranges[j].max = 1.2f;
  434. kData->param.ranges[j].def = FLUID_REVERB_DEFAULT_ROOMSIZE;
  435. kData->param.ranges[j].step = 0.01f;
  436. kData->param.ranges[j].stepSmall = 0.0001f;
  437. kData->param.ranges[j].stepLarge = 0.1f;
  438. fParamBuffers[j] = kData->param.ranges[j].def;
  439. // ----------------------
  440. j = FluidSynthReverbDamp;
  441. kData->param.data[j].index = j;
  442. kData->param.data[j].rindex = j;
  443. kData->param.data[j].type = PARAMETER_INPUT;
  444. kData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_AUTOMABLE;
  445. kData->param.data[j].midiChannel = 0;
  446. kData->param.data[j].midiCC = -1;
  447. kData->param.ranges[j].min = 0.0f;
  448. kData->param.ranges[j].max = 1.0f;
  449. kData->param.ranges[j].def = FLUID_REVERB_DEFAULT_DAMP;
  450. kData->param.ranges[j].step = 0.01f;
  451. kData->param.ranges[j].stepSmall = 0.0001f;
  452. kData->param.ranges[j].stepLarge = 0.1f;
  453. fParamBuffers[j] = kData->param.ranges[j].def;
  454. // ----------------------
  455. j = FluidSynthReverbLevel;
  456. kData->param.data[j].index = j;
  457. kData->param.data[j].rindex = j;
  458. kData->param.data[j].type = PARAMETER_INPUT;
  459. kData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_AUTOMABLE;
  460. kData->param.data[j].midiChannel = 0;
  461. kData->param.data[j].midiCC = MIDI_CONTROL_REVERB_SEND_LEVEL;
  462. kData->param.ranges[j].min = 0.0f;
  463. kData->param.ranges[j].max = 1.0f;
  464. kData->param.ranges[j].def = FLUID_REVERB_DEFAULT_LEVEL;
  465. kData->param.ranges[j].step = 0.01f;
  466. kData->param.ranges[j].stepSmall = 0.0001f;
  467. kData->param.ranges[j].stepLarge = 0.1f;
  468. fParamBuffers[j] = kData->param.ranges[j].def;
  469. // ----------------------
  470. j = FluidSynthReverbWidth;
  471. kData->param.data[j].index = j;
  472. kData->param.data[j].rindex = j;
  473. kData->param.data[j].type = PARAMETER_INPUT;
  474. kData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_AUTOMABLE;
  475. kData->param.data[j].midiChannel = 0;
  476. kData->param.data[j].midiCC = -1;
  477. kData->param.ranges[j].min = 0.0f;
  478. kData->param.ranges[j].max = 10.0f; // should be 100, but that sounds too much
  479. kData->param.ranges[j].def = FLUID_REVERB_DEFAULT_WIDTH;
  480. kData->param.ranges[j].step = 0.01f;
  481. kData->param.ranges[j].stepSmall = 0.0001f;
  482. kData->param.ranges[j].stepLarge = 0.1f;
  483. fParamBuffers[j] = kData->param.ranges[j].def;
  484. // ----------------------
  485. j = FluidSynthChorusOnOff;
  486. kData->param.data[j].index = j;
  487. kData->param.data[j].rindex = j;
  488. kData->param.data[j].type = PARAMETER_INPUT;
  489. kData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_BOOLEAN;
  490. kData->param.data[j].midiChannel = 0;
  491. kData->param.data[j].midiCC = -1;
  492. kData->param.ranges[j].min = 0.0f;
  493. kData->param.ranges[j].max = 1.0f;
  494. kData->param.ranges[j].def = 0.0f; // off
  495. kData->param.ranges[j].step = 1.0f;
  496. kData->param.ranges[j].stepSmall = 1.0f;
  497. kData->param.ranges[j].stepLarge = 1.0f;
  498. fParamBuffers[j] = kData->param.ranges[j].def;
  499. // ----------------------
  500. j = FluidSynthChorusNr;
  501. kData->param.data[j].index = j;
  502. kData->param.data[j].rindex = j;
  503. kData->param.data[j].type = PARAMETER_INPUT;
  504. kData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_INTEGER;
  505. kData->param.data[j].midiChannel = 0;
  506. kData->param.data[j].midiCC = -1;
  507. kData->param.ranges[j].min = 0.0f;
  508. kData->param.ranges[j].max = 99.0f;
  509. kData->param.ranges[j].def = FLUID_CHORUS_DEFAULT_N;
  510. kData->param.ranges[j].step = 1.0f;
  511. kData->param.ranges[j].stepSmall = 1.0f;
  512. kData->param.ranges[j].stepLarge = 10.0f;
  513. fParamBuffers[j] = kData->param.ranges[j].def;
  514. // ----------------------
  515. j = FluidSynthChorusLevel;
  516. kData->param.data[j].index = j;
  517. kData->param.data[j].rindex = j;
  518. kData->param.data[j].type = PARAMETER_INPUT;
  519. kData->param.data[j].hints = PARAMETER_IS_ENABLED;
  520. kData->param.data[j].midiChannel = 0;
  521. kData->param.data[j].midiCC = 0; //MIDI_CONTROL_CHORUS_SEND_LEVEL;
  522. kData->param.ranges[j].min = 0.0f;
  523. kData->param.ranges[j].max = 10.0f;
  524. kData->param.ranges[j].def = FLUID_CHORUS_DEFAULT_LEVEL;
  525. kData->param.ranges[j].step = 0.01f;
  526. kData->param.ranges[j].stepSmall = 0.0001f;
  527. kData->param.ranges[j].stepLarge = 0.1f;
  528. fParamBuffers[j] = kData->param.ranges[j].def;
  529. // ----------------------
  530. j = FluidSynthChorusSpeedHz;
  531. kData->param.data[j].index = j;
  532. kData->param.data[j].rindex = j;
  533. kData->param.data[j].type = PARAMETER_INPUT;
  534. kData->param.data[j].hints = PARAMETER_IS_ENABLED;
  535. kData->param.data[j].midiChannel = 0;
  536. kData->param.data[j].midiCC = -1;
  537. kData->param.ranges[j].min = 0.29f;
  538. kData->param.ranges[j].max = 5.0f;
  539. kData->param.ranges[j].def = FLUID_CHORUS_DEFAULT_SPEED;
  540. kData->param.ranges[j].step = 0.01f;
  541. kData->param.ranges[j].stepSmall = 0.0001f;
  542. kData->param.ranges[j].stepLarge = 0.1f;
  543. fParamBuffers[j] = kData->param.ranges[j].def;
  544. // ----------------------
  545. j = FluidSynthChorusDepthMs;
  546. kData->param.data[j].index = j;
  547. kData->param.data[j].rindex = j;
  548. kData->param.data[j].type = PARAMETER_INPUT;
  549. kData->param.data[j].hints = PARAMETER_IS_ENABLED;
  550. kData->param.data[j].midiChannel = 0;
  551. kData->param.data[j].midiCC = -1;
  552. kData->param.ranges[j].min = 0.0f;
  553. kData->param.ranges[j].max = 2048000.0 / kData->engine->getSampleRate();
  554. kData->param.ranges[j].def = FLUID_CHORUS_DEFAULT_DEPTH;
  555. kData->param.ranges[j].step = 0.01f;
  556. kData->param.ranges[j].stepSmall = 0.0001f;
  557. kData->param.ranges[j].stepLarge = 0.1f;
  558. fParamBuffers[j] = kData->param.ranges[j].def;
  559. // ----------------------
  560. j = FluidSynthChorusType;
  561. kData->param.data[j].index = j;
  562. kData->param.data[j].rindex = j;
  563. kData->param.data[j].type = PARAMETER_INPUT;
  564. kData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_INTEGER | PARAMETER_USES_SCALEPOINTS;
  565. kData->param.data[j].midiChannel = 0;
  566. kData->param.data[j].midiCC = -1;
  567. kData->param.ranges[j].min = FLUID_CHORUS_MOD_SINE;
  568. kData->param.ranges[j].max = FLUID_CHORUS_MOD_TRIANGLE;
  569. kData->param.ranges[j].def = FLUID_CHORUS_DEFAULT_TYPE;
  570. kData->param.ranges[j].step = 1.0f;
  571. kData->param.ranges[j].stepSmall = 1.0f;
  572. kData->param.ranges[j].stepLarge = 1.0f;
  573. fParamBuffers[j] = kData->param.ranges[j].def;
  574. // ----------------------
  575. j = FluidSynthPolyphony;
  576. kData->param.data[j].index = j;
  577. kData->param.data[j].rindex = j;
  578. kData->param.data[j].type = PARAMETER_INPUT;
  579. kData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_INTEGER;
  580. kData->param.data[j].midiChannel = 0;
  581. kData->param.data[j].midiCC = -1;
  582. kData->param.ranges[j].min = 1.0f;
  583. kData->param.ranges[j].max = 512.0f; // max theoric is 65535
  584. kData->param.ranges[j].def = fluid_synth_get_polyphony(fSynth);
  585. kData->param.ranges[j].step = 1.0f;
  586. kData->param.ranges[j].stepSmall = 1.0f;
  587. kData->param.ranges[j].stepLarge = 10.0f;
  588. fParamBuffers[j] = kData->param.ranges[j].def;
  589. // ----------------------
  590. j = FluidSynthInterpolation;
  591. kData->param.data[j].index = j;
  592. kData->param.data[j].rindex = j;
  593. kData->param.data[j].type = PARAMETER_INPUT;
  594. kData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_INTEGER | PARAMETER_USES_SCALEPOINTS;
  595. kData->param.data[j].midiChannel = 0;
  596. kData->param.data[j].midiCC = -1;
  597. kData->param.ranges[j].min = FLUID_INTERP_NONE;
  598. kData->param.ranges[j].max = FLUID_INTERP_HIGHEST;
  599. kData->param.ranges[j].def = FLUID_INTERP_DEFAULT;
  600. kData->param.ranges[j].step = 1.0f;
  601. kData->param.ranges[j].stepSmall = 1.0f;
  602. kData->param.ranges[j].stepLarge = 1.0f;
  603. fParamBuffers[j] = kData->param.ranges[j].def;
  604. // ----------------------
  605. j = FluidSynthVoiceCount;
  606. kData->param.data[j].index = j;
  607. kData->param.data[j].rindex = j;
  608. kData->param.data[j].type = PARAMETER_OUTPUT;
  609. kData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_AUTOMABLE | PARAMETER_IS_INTEGER;
  610. kData->param.data[j].midiChannel = 0;
  611. kData->param.data[j].midiCC = -1;
  612. kData->param.ranges[j].min = 0.0f;
  613. kData->param.ranges[j].max = 65535.0f;
  614. kData->param.ranges[j].def = 0.0f;
  615. kData->param.ranges[j].step = 1.0f;
  616. kData->param.ranges[j].stepSmall = 1.0f;
  617. kData->param.ranges[j].stepLarge = 1.0f;
  618. fParamBuffers[j] = kData->param.ranges[j].def;
  619. // ---------------------------------------
  620. // plugin checks
  621. fHints = 0;
  622. fHints |= PLUGIN_IS_RTSAFE;
  623. fHints |= PLUGIN_IS_SYNTH;
  624. fHints |= PLUGIN_CAN_VOLUME;
  625. if (! kUses16Outs)
  626. {
  627. fHints |= PLUGIN_CAN_BALANCE;
  628. }
  629. // plugin options
  630. fOptions = 0;
  631. fOptions |= PLUGIN_OPTION_SEND_ALL_SOUND_OFF;
  632. fOptions |= PLUGIN_OPTION_SEND_PITCHBEND;
  633. bufferSizeChanged(kData->engine->getBufferSize());
  634. reloadPrograms(true);
  635. carla_debug("FluidSynthPlugin::reload() - end");
  636. }
  637. void reloadPrograms(const bool init)
  638. {
  639. carla_debug("FluidSynthPlugin::reloadPrograms(%s)", bool2str(init));
  640. // Delete old programs
  641. kData->midiprog.clear();
  642. // Query new programs
  643. uint32_t count = 0;
  644. fluid_sfont_t* f_sfont;
  645. fluid_preset_t f_preset;
  646. bool hasDrums = false;
  647. f_sfont = fluid_synth_get_sfont_by_id(fSynth, fSynthId);
  648. // initial check to know how much midi-programs we have
  649. f_sfont->iteration_start(f_sfont);
  650. while (f_sfont->iteration_next(f_sfont, &f_preset))
  651. count += 1;
  652. // soundfonts must always have at least 1 midi-program
  653. CARLA_ASSERT(count > 0);
  654. if (count == 0)
  655. return;
  656. kData->midiprog.createNew(count);
  657. // Update data
  658. uint32_t i = 0;
  659. f_sfont->iteration_start(f_sfont);
  660. while (f_sfont->iteration_next(f_sfont, &f_preset))
  661. {
  662. CARLA_ASSERT(i < kData->midiprog.count);
  663. kData->midiprog.data[i].bank = f_preset.get_banknum(&f_preset);
  664. kData->midiprog.data[i].program = f_preset.get_num(&f_preset);
  665. kData->midiprog.data[i].name = carla_strdup(f_preset.get_name(&f_preset));
  666. if (kData->midiprog.data[i].bank == 128)
  667. hasDrums = true;
  668. i++;
  669. }
  670. //f_sfont->free(f_sfont);
  671. #ifndef BUILD_BRIDGE
  672. // Update OSC Names
  673. if (kData->engine->isOscControlRegistered())
  674. {
  675. kData->engine->osc_send_control_set_midi_program_count(fId, kData->midiprog.count);
  676. for (i=0; i < kData->midiprog.count; i++)
  677. kData->engine->osc_send_control_set_midi_program_data(fId, i, kData->midiprog.data[i].bank, kData->midiprog.data[i].program, kData->midiprog.data[i].name);
  678. }
  679. #endif
  680. if (init)
  681. {
  682. fluid_synth_program_reset(fSynth);
  683. // select first program, or 128 for ch10
  684. for (i=0; i < 16 && i != 9; i++)
  685. {
  686. fluid_synth_program_select(fSynth, i, fSynthId, kData->midiprog.data[0].bank, kData->midiprog.data[0].program);
  687. #ifdef FLUIDSYNTH_VERSION_NEW_API
  688. fluid_synth_set_channel_type(fSynth, i, CHANNEL_TYPE_MELODIC);
  689. #endif
  690. }
  691. if (hasDrums)
  692. {
  693. fluid_synth_program_select(fSynth, 9, fSynthId, 128, 0);
  694. #ifdef FLUIDSYNTH_VERSION_NEW_API
  695. fluid_synth_set_channel_type(fSynth, 9, CHANNEL_TYPE_DRUM);
  696. #endif
  697. }
  698. else
  699. {
  700. fluid_synth_program_select(fSynth, 9, fSynthId, kData->midiprog.data[0].bank, kData->midiprog.data[0].program);
  701. #ifdef FLUIDSYNTH_VERSION_NEW_API
  702. fluid_synth_set_channel_type(fSynth, 9, CHANNEL_TYPE_MELODIC);
  703. #endif
  704. }
  705. setMidiProgram(0, false, false, false);
  706. }
  707. else
  708. {
  709. kData->engine->callback(CALLBACK_RELOAD_PROGRAMS, fId, 0, 0, 0.0f, nullptr);
  710. }
  711. }
  712. // -------------------------------------------------------------------
  713. // Plugin processing
  714. void process(float** const, float** const outBuffer, const uint32_t frames)
  715. {
  716. uint32_t i, k;
  717. // --------------------------------------------------------------------------------------------------------
  718. // Check if active
  719. if (! kData->active)
  720. {
  721. // disable any output sound
  722. for (i=0; i < kData->audioOut.count; i++)
  723. carla_zeroFloat(outBuffer[i], frames);
  724. kData->activeBefore = kData->active;
  725. return;
  726. }
  727. // --------------------------------------------------------------------------------------------------------
  728. // Check if not active before
  729. if (kData->needsReset || ! kData->activeBefore)
  730. {
  731. for (int c=0; c < MAX_MIDI_CHANNELS; c++)
  732. {
  733. #ifdef FLUIDSYNTH_VERSION_NEW_API
  734. fluid_synth_all_notes_off(fSynth, c);
  735. fluid_synth_all_sounds_off(fSynth, c);
  736. #else
  737. fluid_synth_cc(f_synth, c, MIDI_CONTROL_ALL_SOUND_OFF, 0);
  738. fluid_synth_cc(f_synth, c, MIDI_CONTROL_ALL_NOTES_OFF, 0);
  739. #endif
  740. }
  741. kData->needsReset = false;
  742. }
  743. // --------------------------------------------------------------------------------------------------------
  744. // Event Input and Processing
  745. if (kData->activeBefore)
  746. {
  747. // ----------------------------------------------------------------------------------------------------
  748. // MIDI Input (External)
  749. if (kData->extNotes.mutex.tryLock())
  750. {
  751. while (! kData->extNotes.data.isEmpty())
  752. {
  753. const ExternalMidiNote& note = kData->extNotes.data.getFirst(true);
  754. CARLA_ASSERT(note.channel >= 0);
  755. if (note.velo > 0)
  756. fluid_synth_noteon(fSynth, note.channel, note.note, note.velo);
  757. else
  758. fluid_synth_noteoff(fSynth,note.channel, note.note);
  759. }
  760. kData->extNotes.mutex.unlock();
  761. } // End of MIDI Input (External)
  762. // ----------------------------------------------------------------------------------------------------
  763. // Event Input (System)
  764. bool allNotesOffSent = false;
  765. uint32_t time, nEvents = kData->event.portIn->getEventCount();
  766. uint32_t timeOffset = 0;
  767. uint32_t nextBankIds[16] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 128, 0, 0, 0, 0, 0, 0 };
  768. if (kData->midiprog.current >= 0 && kData->midiprog.count > 0 && kData->ctrlChannel >= 0 && kData->ctrlChannel < 16)
  769. nextBankIds[kData->ctrlChannel] = kData->midiprog.data[kData->midiprog.current].bank;
  770. for (i=0; i < nEvents; i++)
  771. {
  772. const EngineEvent& event = kData->event.portIn->getEvent(i);
  773. time = event.time;
  774. if (time >= frames)
  775. continue;
  776. CARLA_ASSERT_INT2(time >= timeOffset, time, timeOffset);
  777. if (time > timeOffset)
  778. {
  779. if (processSingle(outBuffer, time - timeOffset, timeOffset))
  780. {
  781. timeOffset = time;
  782. if (kData->midiprog.current >= 0 && kData->midiprog.count > 0 && kData->ctrlChannel >= 0 && kData->ctrlChannel < 16)
  783. nextBankIds[kData->ctrlChannel] = kData->midiprog.data[kData->midiprog.current].bank;
  784. }
  785. }
  786. // Control change
  787. switch (event.type)
  788. {
  789. case kEngineEventTypeNull:
  790. break;
  791. case kEngineEventTypeControl:
  792. {
  793. const EngineControlEvent& ctrlEvent = event.ctrl;
  794. switch (ctrlEvent.type)
  795. {
  796. case kEngineControlEventTypeNull:
  797. break;
  798. case kEngineControlEventTypeParameter:
  799. {
  800. // Control backend stuff
  801. if (event.channel == kData->ctrlChannel)
  802. {
  803. float value;
  804. if (MIDI_IS_CONTROL_BREATH_CONTROLLER(ctrlEvent.param) && (fHints & PLUGIN_CAN_DRYWET) > 0)
  805. {
  806. value = ctrlEvent.value;
  807. setDryWet(value, false, false);
  808. postponeRtEvent(kPluginPostRtEventParameterChange, PARAMETER_DRYWET, 0, value);
  809. continue;
  810. }
  811. if (MIDI_IS_CONTROL_CHANNEL_VOLUME(ctrlEvent.param) && (fHints & PLUGIN_CAN_VOLUME) > 0)
  812. {
  813. value = ctrlEvent.value*127.0f/100.0f;
  814. setVolume(value, false, false);
  815. postponeRtEvent(kPluginPostRtEventParameterChange, PARAMETER_VOLUME, 0, value);
  816. continue;
  817. }
  818. if (MIDI_IS_CONTROL_BALANCE(ctrlEvent.param) && (fHints & PLUGIN_CAN_BALANCE) > 0)
  819. {
  820. float left, right;
  821. value = ctrlEvent.value/0.5f - 1.0f;
  822. if (value < 0.0f)
  823. {
  824. left = -1.0f;
  825. right = (value*2.0f)+1.0f;
  826. }
  827. else if (value > 0.0f)
  828. {
  829. left = (value*2.0f)-1.0f;
  830. right = 1.0f;
  831. }
  832. else
  833. {
  834. left = -1.0f;
  835. right = 1.0f;
  836. }
  837. setBalanceLeft(left, false, false);
  838. setBalanceRight(right, false, false);
  839. postponeRtEvent(kPluginPostRtEventParameterChange, PARAMETER_BALANCE_LEFT, 0, left);
  840. postponeRtEvent(kPluginPostRtEventParameterChange, PARAMETER_BALANCE_RIGHT, 0, right);
  841. continue;
  842. }
  843. }
  844. // Control plugin parameters
  845. for (k=0; k < kData->param.count; k++)
  846. {
  847. if (kData->param.data[k].midiChannel != event.channel)
  848. continue;
  849. if (kData->param.data[k].midiCC != ctrlEvent.param)
  850. continue;
  851. if (kData->param.data[k].type != PARAMETER_INPUT)
  852. continue;
  853. if ((kData->param.data[k].hints & PARAMETER_IS_AUTOMABLE) == 0)
  854. continue;
  855. float value;
  856. if (kData->param.data[k].hints & PARAMETER_IS_BOOLEAN)
  857. {
  858. value = (ctrlEvent.value < 0.5f) ? kData->param.ranges[k].min : kData->param.ranges[k].max;
  859. }
  860. else
  861. {
  862. value = kData->param.ranges[i].unnormalizeValue(ctrlEvent.value);
  863. if (kData->param.data[k].hints & PARAMETER_IS_INTEGER)
  864. value = std::rint(value);
  865. }
  866. setParameterValue(k, value, false, false, false);
  867. postponeRtEvent(kPluginPostRtEventParameterChange, static_cast<int32_t>(k), 0, value);
  868. }
  869. break;
  870. }
  871. case kEngineControlEventTypeMidiBank:
  872. if (event.channel < 16)
  873. nextBankIds[event.channel] = ctrlEvent.param;
  874. break;
  875. case kEngineControlEventTypeMidiProgram:
  876. if (event.channel < 16)
  877. {
  878. const uint32_t bankId = nextBankIds[event.channel];
  879. const uint32_t progId = ctrlEvent.param;
  880. for (k=0; k < kData->midiprog.count; k++)
  881. {
  882. if (kData->midiprog.data[k].bank == bankId && kData->midiprog.data[k].program == progId)
  883. {
  884. if (event.channel == kData->ctrlChannel)
  885. {
  886. setMidiProgram(k, false, false, false);
  887. postponeRtEvent(kPluginPostRtEventMidiProgramChange, k, 0, 0.0);
  888. }
  889. else
  890. fluid_synth_program_select(fSynth, event.channel, fSynthId, bankId, progId);
  891. break;
  892. }
  893. }
  894. }
  895. break;
  896. case kEngineControlEventTypeAllSoundOff:
  897. if (event.channel == kData->ctrlChannel)
  898. {
  899. if (! allNotesOffSent)
  900. sendMidiAllNotesOff();
  901. postponeRtEvent(kPluginPostRtEventParameterChange, PARAMETER_ACTIVE, 0, 0.0);
  902. postponeRtEvent(kPluginPostRtEventParameterChange, PARAMETER_ACTIVE, 0, 1.0);
  903. allNotesOffSent = true;
  904. #ifdef FLUIDSYNTH_VERSION_NEW_API
  905. fluid_synth_all_sounds_off(fSynth, event.channel);
  906. #else
  907. fluid_synth_cc(f_synth, event.channel, MIDI_CONTROL_ALL_SOUND_OFF, 0);
  908. #endif
  909. }
  910. break;
  911. case kEngineControlEventTypeAllNotesOff:
  912. if (event.channel == kData->ctrlChannel)
  913. {
  914. if (! allNotesOffSent)
  915. sendMidiAllNotesOff();
  916. allNotesOffSent = true;
  917. #ifdef FLUIDSYNTH_VERSION_NEW_API
  918. fluid_synth_all_notes_off(fSynth, event.channel);
  919. #else
  920. fluid_synth_cc(f_synth, event.channel, MIDI_CONTROL_ALL_NOTES_OFF, 0);
  921. #endif
  922. }
  923. break;
  924. }
  925. break;
  926. }
  927. case kEngineEventTypeMidi:
  928. {
  929. const EngineMidiEvent& midiEvent = event.midi;
  930. uint8_t status = MIDI_GET_STATUS_FROM_DATA(midiEvent.data);
  931. uint8_t channel = event.channel;
  932. // Fix bad note-off
  933. if (MIDI_IS_STATUS_NOTE_ON(status) && midiEvent.data[2] == 0)
  934. status -= 0x10;
  935. if (MIDI_IS_STATUS_NOTE_OFF(status))
  936. {
  937. const uint8_t note = midiEvent.data[1];
  938. fluid_synth_noteoff(fSynth, channel, note);
  939. postponeRtEvent(kPluginPostRtEventNoteOff, channel, note, 0.0);
  940. }
  941. else if (MIDI_IS_STATUS_NOTE_ON(status))
  942. {
  943. const uint8_t note = midiEvent.data[1];
  944. const uint8_t velo = midiEvent.data[2];
  945. fluid_synth_noteon(fSynth, channel, note, velo);
  946. postponeRtEvent(kPluginPostRtEventNoteOn, channel, note, velo);
  947. }
  948. else if (MIDI_IS_STATUS_POLYPHONIC_AFTERTOUCH(status) && (fOptions & PLUGIN_OPTION_SEND_NOTE_AFTERTOUCH) != 0)
  949. {
  950. //const uint8_t note = midiEvent.data[1];
  951. //const uint8_t pressure = midiEvent.data[2];
  952. // TODO, not in fluidsynth API
  953. }
  954. else if (MIDI_IS_STATUS_CONTROL_CHANGE(status) && (fOptions & PLUGIN_OPTION_SEND_CONTROL_CHANGES) != 0)
  955. {
  956. const uint8_t control = midiEvent.data[1];
  957. const uint8_t value = midiEvent.data[2];
  958. fluid_synth_cc(fSynth, channel, control, value);
  959. }
  960. else if (MIDI_IS_STATUS_AFTERTOUCH(status) && (fOptions & PLUGIN_OPTION_SEND_CHANNEL_PRESSURE) != 0)
  961. {
  962. const uint8_t pressure = midiEvent.data[1];
  963. fluid_synth_channel_pressure(fSynth, channel, pressure);;
  964. }
  965. else if (MIDI_IS_STATUS_PITCH_WHEEL_CONTROL(status) && (fOptions & PLUGIN_OPTION_SEND_PITCHBEND) != 0)
  966. {
  967. const uint8_t lsb = midiEvent.data[1];
  968. const uint8_t msb = midiEvent.data[2];
  969. fluid_synth_pitch_bend(fSynth, channel, (msb << 7) | lsb);
  970. }
  971. break;
  972. }
  973. }
  974. }
  975. kData->postRtEvents.trySplice();
  976. if (frames > timeOffset)
  977. processSingle(outBuffer, frames - timeOffset, timeOffset);
  978. } // End of Event Input and Processing
  979. CARLA_PROCESS_CONTINUE_CHECK;
  980. // --------------------------------------------------------------------------------------------------------
  981. // Control Output
  982. {
  983. k = FluidSynthVoiceCount;
  984. fParamBuffers[k] = fluid_synth_get_active_voice_count(fSynth);
  985. kData->param.ranges[k].fixValue(fParamBuffers[k]);
  986. if (kData->param.data[k].midiCC > 0)
  987. {
  988. double value = kData->param.ranges[k].normalizeValue(fParamBuffers[k]);
  989. kData->event.portOut->writeControlEvent(0, kData->param.data[k].midiChannel, kEngineControlEventTypeParameter, kData->param.data[k].midiCC, value);
  990. }
  991. } // End of Control Output
  992. // --------------------------------------------------------------------------------------------------------
  993. kData->activeBefore = kData->active;
  994. }
  995. bool processSingle(float** const outBuffer, const uint32_t frames, const uint32_t timeOffset)
  996. {
  997. uint32_t i, k;
  998. // --------------------------------------------------------------------------------------------------------
  999. // Try lock, silence otherwise
  1000. if (kData->engine->isOffline())
  1001. {
  1002. kData->mutex.lock();
  1003. }
  1004. else if (! kData->mutex.tryLock())
  1005. {
  1006. for (i=0; i < kData->audioOut.count; i++)
  1007. {
  1008. for (k=0; k < frames; k++)
  1009. outBuffer[i][k+timeOffset] = 0.0f;
  1010. }
  1011. return false;
  1012. }
  1013. // --------------------------------------------------------------------------------------------------------
  1014. // Fill plugin buffers and Run plugin
  1015. if (kUses16Outs)
  1016. {
  1017. for (i=0; i < kData->audioOut.count; i++)
  1018. carla_zeroFloat(fAudio16Buffers[i], frames);
  1019. fluid_synth_process(fSynth, frames, 0, nullptr, kData->audioOut.count, fAudio16Buffers);
  1020. }
  1021. else
  1022. fluid_synth_write_float(fSynth, frames, outBuffer[0] + timeOffset, 0, 1, outBuffer[1] + timeOffset, 0, 1);
  1023. // --------------------------------------------------------------------------------------------------------
  1024. // Post-processing (volume and balance)
  1025. {
  1026. // note - balance not possible with kUses16Outs, so we can safely skip fAudioOutBuffers
  1027. const bool doVolume = (fHints & PLUGIN_CAN_VOLUME) > 0 && kData->postProc.volume != 1.0f;
  1028. const bool doBalance = (fHints & PLUGIN_CAN_BALANCE) > 0 && (kData->postProc.balanceLeft != -1.0f || kData->postProc.balanceRight != 1.0f);
  1029. float oldBufLeft[doBalance ? frames : 1];
  1030. for (i=0; i < kData->audioOut.count; i++)
  1031. {
  1032. // Balance
  1033. if (doBalance)
  1034. {
  1035. if (i % 2 == 0)
  1036. carla_copyFloat(oldBufLeft, outBuffer[i]+timeOffset, frames);
  1037. float balRangeL = (kData->postProc.balanceLeft + 1.0f)/2.0f;
  1038. float balRangeR = (kData->postProc.balanceRight + 1.0f)/2.0f;
  1039. for (k=0; k < frames; k++)
  1040. {
  1041. if (i % 2 == 0)
  1042. {
  1043. // left
  1044. outBuffer[i][k+timeOffset] = oldBufLeft[k] * (1.0f - balRangeL);
  1045. outBuffer[i][k+timeOffset] += outBuffer[i+1][k+timeOffset] * (1.0f - balRangeR);
  1046. }
  1047. else
  1048. {
  1049. // right
  1050. outBuffer[i][k+timeOffset] = outBuffer[i][k+timeOffset] * balRangeR;
  1051. outBuffer[i][k+timeOffset] += oldBufLeft[k] * balRangeL;
  1052. }
  1053. }
  1054. }
  1055. // Volume
  1056. if (kUses16Outs)
  1057. {
  1058. for (k=0; k < frames; k++)
  1059. outBuffer[i][k+timeOffset] = fAudio16Buffers[i][k] * kData->postProc.volume;
  1060. }
  1061. else if (doVolume)
  1062. {
  1063. for (k=0; k < frames; k++)
  1064. outBuffer[i][k+timeOffset] *= kData->postProc.volume;
  1065. }
  1066. }
  1067. } // End of Post-processing
  1068. // --------------------------------------------------------------------------------------------------------
  1069. kData->mutex.unlock();
  1070. return true;
  1071. }
  1072. void bufferSizeChanged(const uint32_t newBufferSize)
  1073. {
  1074. if (! kUses16Outs)
  1075. return;
  1076. for (uint32_t i=0; i < kData->audioOut.count; i++)
  1077. {
  1078. if (fAudio16Buffers[i] != nullptr)
  1079. delete[] fAudio16Buffers[i];
  1080. fAudio16Buffers[i] = new float[newBufferSize];
  1081. }
  1082. }
  1083. // -------------------------------------------------------------------
  1084. // Cleanup
  1085. void deleteBuffers()
  1086. {
  1087. carla_debug("FluidSynthPlugin::deleteBuffers() - start");
  1088. if (fAudio16Buffers != nullptr)
  1089. {
  1090. for (uint32_t i=0; i < kData->audioOut.count; i++)
  1091. {
  1092. if (fAudio16Buffers[i] != nullptr)
  1093. {
  1094. delete[] fAudio16Buffers[i];
  1095. fAudio16Buffers[i] = nullptr;
  1096. }
  1097. }
  1098. delete[] fAudio16Buffers;
  1099. fAudio16Buffers = nullptr;
  1100. }
  1101. CarlaPlugin::deleteBuffers();
  1102. carla_debug("FluidSynthPlugin::deleteBuffers() - end");
  1103. }
  1104. // -------------------------------------------------------------------
  1105. bool init(const char* const filename, const char* const name, const char* const label)
  1106. {
  1107. CARLA_ASSERT(fSynth != nullptr);
  1108. CARLA_ASSERT(filename != nullptr);
  1109. CARLA_ASSERT(label != nullptr);
  1110. // ---------------------------------------------------------------
  1111. // open soundfont
  1112. fSynthId = fluid_synth_sfload(fSynth, filename, 0);
  1113. if (fSynthId < 0)
  1114. {
  1115. kData->engine->setLastError("Failed to load SoundFont file");
  1116. return false;
  1117. }
  1118. // ---------------------------------------------------------------
  1119. // get info
  1120. fFilename = filename;
  1121. fLabel = label;
  1122. if (name != nullptr)
  1123. fName = kData->engine->getNewUniquePluginName(name);
  1124. else
  1125. fName = kData->engine->getNewUniquePluginName(label);
  1126. // ---------------------------------------------------------------
  1127. // register client
  1128. kData->client = kData->engine->addClient(this);
  1129. if (kData->client == nullptr || ! kData->client->isOk())
  1130. {
  1131. kData->engine->setLastError("Failed to register plugin client");
  1132. return false;
  1133. }
  1134. return true;
  1135. }
  1136. private:
  1137. enum FluidSynthInputParameters {
  1138. FluidSynthReverbOnOff = 0,
  1139. FluidSynthReverbRoomSize = 1,
  1140. FluidSynthReverbDamp = 2,
  1141. FluidSynthReverbLevel = 3,
  1142. FluidSynthReverbWidth = 4,
  1143. FluidSynthChorusOnOff = 5,
  1144. FluidSynthChorusNr = 6,
  1145. FluidSynthChorusLevel = 7,
  1146. FluidSynthChorusSpeedHz = 8,
  1147. FluidSynthChorusDepthMs = 9,
  1148. FluidSynthChorusType = 10,
  1149. FluidSynthPolyphony = 11,
  1150. FluidSynthInterpolation = 12,
  1151. FluidSynthVoiceCount = 13,
  1152. FluidSynthParametersMax = 14
  1153. };
  1154. const bool kUses16Outs;
  1155. CarlaString fLabel;
  1156. fluid_settings_t* fSettings;
  1157. fluid_synth_t* fSynth;
  1158. int fSynthId;
  1159. float** fAudio16Buffers;
  1160. double fParamBuffers[FluidSynthParametersMax];
  1161. };
  1162. CARLA_BACKEND_END_NAMESPACE
  1163. #else // WANT_FLUIDSYNTH
  1164. # warning fluidsynth not available (no SF2 support)
  1165. #endif
  1166. CARLA_BACKEND_START_NAMESPACE
  1167. CarlaPlugin* CarlaPlugin::newSF2(const Initializer& init, const bool use16Outs)
  1168. {
  1169. carla_debug("CarlaPlugin::newSF2({%p, \"%s\", \"%s\", \"%s\"}, %s)", init.engine, init.filename, init.name, init.label, bool2str(use16Outs));
  1170. #ifdef WANT_FLUIDSYNTH
  1171. if (! fluid_is_soundfont(init.filename))
  1172. {
  1173. init.engine->setLastError("Requested file is not a valid SoundFont");
  1174. return nullptr;
  1175. }
  1176. if (init.engine->getProccessMode() == PROCESS_MODE_CONTINUOUS_RACK && use16Outs)
  1177. {
  1178. init.engine->setLastError("Carla's rack mode can only work with Stereo modules, please choose the 2-channel only SoundFont version");
  1179. return nullptr;
  1180. }
  1181. FluidSynthPlugin* const plugin = new FluidSynthPlugin(init.engine, init.id, use16Outs);
  1182. if (! plugin->init(init.filename, init.name, init.label))
  1183. {
  1184. delete plugin;
  1185. return nullptr;
  1186. }
  1187. plugin->reload();
  1188. return plugin;
  1189. #else
  1190. init.engine->setLastError("fluidsynth support not available");
  1191. return nullptr;
  1192. // unused
  1193. (void)use16Outs;
  1194. #endif
  1195. }
  1196. CARLA_BACKEND_END_NAMESPACE