/* ============================================================================== This file is part of the Water library. Copyright (c) 2016 ROLI Ltd. Copyright (C) 2017 Filipe Coelho Permission is granted to use this software under the terms of the ISC license http://www.isc.org/downloads/software-support-policy/isc-license/ Permission to use, copy, modify, and/or distribute this software for any purpose with or without fee is hereby granted, provided that the above copyright notice and this permission notice appear in all copies. THE SOFTWARE IS PROVIDED "AS IS" AND ISC DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL ISC BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. ============================================================================== */ #ifndef WATER_REFERENCECOUNTEDARRAY_H_INCLUDED #define WATER_REFERENCECOUNTEDARRAY_H_INCLUDED #include "../memory/ReferenceCountedObject.h" namespace water { //============================================================================== /** Holds a list of objects derived from ReferenceCountedObject, or which implement basic reference-count handling methods. The template parameter specifies the class of the object you want to point to - the easiest way to make a class reference-countable is to simply make it inherit from ReferenceCountedObject or SingleThreadedReferenceCountedObject, but if you need to, you can roll your own reference-countable class by implementing a set of methods called incReferenceCount(), decReferenceCount(), and decReferenceCountWithoutDeleting(). See ReferenceCountedObject for examples of how these methods should behave. A ReferenceCountedArray holds objects derived from ReferenceCountedObject, and takes care of incrementing and decrementing their ref counts when they are added and removed from the array. To make all the array's methods thread-safe, pass in "CriticalSection" as the templated TypeOfCriticalSectionToUse parameter, instead of the default DummyCriticalSection. @see Array, OwnedArray, StringArray */ template class ReferenceCountedArray { public: typedef ReferenceCountedObjectPtr ObjectClassPtr; //============================================================================== /** Creates an empty array. @see ReferenceCountedObject, Array, OwnedArray */ ReferenceCountedArray() noexcept : numUsed (0) { } /** Creates a copy of another array */ ReferenceCountedArray (const ReferenceCountedArray& other) noexcept { numUsed = other.size(); data.setAllocatedSize (numUsed); memcpy (data.elements, other.getRawDataPointer(), (size_t) numUsed * sizeof (ObjectClass*)); for (int i = numUsed; --i >= 0;) if (ObjectClass* o = data.elements[i]) o->incReferenceCount(); } /** Creates a copy of another array */ template ReferenceCountedArray (const ReferenceCountedArray& other) noexcept { numUsed = other.size(); data.setAllocatedSize (numUsed); memcpy (data.elements, other.getRawDataPointer(), numUsed * sizeof (ObjectClass*)); for (int i = numUsed; --i >= 0;) if (ObjectClass* o = data.elements[i]) o->incReferenceCount(); } /** Copies another array into this one. Any existing objects in this array will first be released. */ ReferenceCountedArray& operator= (const ReferenceCountedArray& other) noexcept { ReferenceCountedArray otherCopy (other); swapWith (otherCopy); return *this; } /** Copies another array into this one. Any existing objects in this array will first be released. */ template ReferenceCountedArray& operator= (const ReferenceCountedArray& other) noexcept { ReferenceCountedArray otherCopy (other); swapWith (otherCopy); return *this; } /** Destructor. Any objects in the array will be released, and may be deleted if not referenced from elsewhere. */ ~ReferenceCountedArray() { releaseAllObjects(); } //============================================================================== /** Removes all objects from the array. Any objects in the array that whose reference counts drop to zero will be deleted. */ void clear() { releaseAllObjects(); data.setAllocatedSize (0); } /** Removes all objects from the array without freeing the array's allocated storage. Any objects in the array that whose reference counts drop to zero will be deleted. @see clear */ void clearQuick() { releaseAllObjects(); } /** Returns the current number of objects in the array. */ inline int size() const noexcept { return numUsed; } /** Returns true if the array is empty, false otherwise. */ inline bool isEmpty() const noexcept { return size() == 0; } /** Returns a pointer to the object at this index in the array. If the index is out-of-range, this will return a null pointer, (and it could be null anyway, because it's ok for the array to hold null pointers as well as objects). @see getUnchecked */ inline ObjectClassPtr operator[] (const int index) const noexcept { return getObjectPointer (index); } /** Returns a pointer to the object at this index in the array, without checking whether the index is in-range. This is a faster and less safe version of operator[] which doesn't check the index passed in, so it can be used when you're sure the index is always going to be legal. */ inline ObjectClassPtr getUnchecked (const int index) const noexcept { return getObjectPointerUnchecked (index); } /** Returns a raw pointer to the object at this index in the array. If the index is out-of-range, this will return a null pointer, (and it could be null anyway, because it's ok for the array to hold null pointers as well as objects). @see getUnchecked */ inline ObjectClass* getObjectPointer (const int index) const noexcept { if (isPositiveAndBelow (index, numUsed)) { jassert (data.elements != nullptr); return data.elements [index]; } return ObjectClassPtr(); } /** Returns a raw pointer to the object at this index in the array, without checking whether the index is in-range. */ inline ObjectClass* getObjectPointerUnchecked (const int index) const noexcept { jassert (isPositiveAndBelow (index, numUsed) && data.elements != nullptr); return data.elements [index]; } /** Returns a pointer to the first object in the array. This will return a null pointer if the array's empty. @see getLast */ inline ObjectClassPtr getFirst() const noexcept { if (numUsed > 0) { jassert (data.elements != nullptr); return data.elements [0]; } return ObjectClassPtr(); } /** Returns a pointer to the last object in the array. This will return a null pointer if the array's empty. @see getFirst */ inline ObjectClassPtr getLast() const noexcept { if (numUsed > 0) { jassert (data.elements != nullptr); return data.elements [numUsed - 1]; } return ObjectClassPtr(); } /** Returns a pointer to the actual array data. This pointer will only be valid until the next time a non-const method is called on the array. */ inline ObjectClass** getRawDataPointer() const noexcept { return data.elements; } //============================================================================== /** Returns a pointer to the first element in the array. This method is provided for compatibility with standard C++ iteration mechanisms. */ inline ObjectClass** begin() const noexcept { return data.elements; } /** Returns a pointer to the element which follows the last element in the array. This method is provided for compatibility with standard C++ iteration mechanisms. */ inline ObjectClass** end() const noexcept { return data.elements + numUsed; } //============================================================================== /** Finds the index of the first occurrence of an object in the array. @param objectToLookFor the object to look for @returns the index at which the object was found, or -1 if it's not found */ int indexOf (const ObjectClass* const objectToLookFor) const noexcept { ObjectClass** e = data.elements.getData(); ObjectClass** const endPointer = e + numUsed; while (e != endPointer) { if (objectToLookFor == *e) return static_cast (e - data.elements.getData()); ++e; } return -1; } /** Returns true if the array contains a specified object. @param objectToLookFor the object to look for @returns true if the object is in the array */ bool contains (const ObjectClass* const objectToLookFor) const noexcept { ObjectClass** e = data.elements.getData(); ObjectClass** const endPointer = e + numUsed; while (e != endPointer) { if (objectToLookFor == *e) return true; ++e; } return false; } /** Appends a new object to the end of the array. This will increase the new object's reference count. @param newObject the new object to add to the array @see set, insert, addIfNotAlreadyThere, addSorted, addArray */ ObjectClass* add (ObjectClass* const newObject) noexcept { data.ensureAllocatedSize (numUsed + 1); jassert (data.elements != nullptr); data.elements [numUsed++] = newObject; if (newObject != nullptr) newObject->incReferenceCount(); return newObject; } /** Inserts a new object into the array at the given index. If the index is less than 0 or greater than the size of the array, the element will be added to the end of the array. Otherwise, it will be inserted into the array, moving all the later elements along to make room. This will increase the new object's reference count. @param indexToInsertAt the index at which the new element should be inserted @param newObject the new object to add to the array @see add, addSorted, addIfNotAlreadyThere, set */ ObjectClass* insert (int indexToInsertAt, ObjectClass* const newObject) noexcept { if (indexToInsertAt < 0) return add (newObject); if (indexToInsertAt > numUsed) indexToInsertAt = numUsed; data.ensureAllocatedSize (numUsed + 1); jassert (data.elements != nullptr); ObjectClass** const e = data.elements + indexToInsertAt; const int numToMove = numUsed - indexToInsertAt; if (numToMove > 0) memmove (e + 1, e, sizeof (ObjectClass*) * (size_t) numToMove); *e = newObject; if (newObject != nullptr) newObject->incReferenceCount(); ++numUsed; return newObject; } /** Appends a new object at the end of the array as long as the array doesn't already contain it. If the array already contains a matching object, nothing will be done. @param newObject the new object to add to the array @returns true if the object has been added, false otherwise */ bool addIfNotAlreadyThere (ObjectClass* const newObject) noexcept { if (contains (newObject)) return false; add (newObject); return true; } /** Replaces an object in the array with a different one. If the index is less than zero, this method does nothing. If the index is beyond the end of the array, the new object is added to the end of the array. The object being added has its reference count increased, and if it's replacing another object, then that one has its reference count decreased, and may be deleted. @param indexToChange the index whose value you want to change @param newObject the new value to set for this index. @see add, insert, remove */ void set (const int indexToChange, ObjectClass* const newObject) { if (indexToChange >= 0) { if (newObject != nullptr) newObject->incReferenceCount(); if (indexToChange < numUsed) { if (ObjectClass* o = data.elements [indexToChange]) releaseObject (o); data.elements [indexToChange] = newObject; } else { data.ensureAllocatedSize (numUsed + 1); jassert (data.elements != nullptr); data.elements [numUsed++] = newObject; } } } /** Adds elements from another array to the end of this array. @param arrayToAddFrom the array from which to copy the elements @param startIndex the first element of the other array to start copying from @param numElementsToAdd how many elements to add from the other array. If this value is negative or greater than the number of available elements, all available elements will be copied. @see add */ void addArray (const ReferenceCountedArray& arrayToAddFrom, int startIndex = 0, int numElementsToAdd = -1) noexcept { if (startIndex < 0) { jassertfalse; startIndex = 0; } if (numElementsToAdd < 0 || startIndex + numElementsToAdd > arrayToAddFrom.size()) numElementsToAdd = arrayToAddFrom.size() - startIndex; if (numElementsToAdd > 0) { data.ensureAllocatedSize (numUsed + numElementsToAdd); while (--numElementsToAdd >= 0) add (arrayToAddFrom.getUnchecked (startIndex++)); } } /** Inserts a new object into the array assuming that the array is sorted. This will use a comparator to find the position at which the new object should go. If the array isn't sorted, the behaviour of this method will be unpredictable. @param comparator the comparator object to use to compare the elements - see the sort() method for details about this object's form @param newObject the new object to insert to the array @returns the index at which the new object was added @see add, sort */ template int addSorted (ElementComparator& comparator, ObjectClass* newObject) noexcept { const int index = findInsertIndexInSortedArray (comparator, data.elements.getData(), newObject, 0, numUsed); insert (index, newObject); return index; } /** Inserts or replaces an object in the array, assuming it is sorted. This is similar to addSorted, but if a matching element already exists, then it will be replaced by the new one, rather than the new one being added as well. */ template void addOrReplaceSorted (ElementComparator& comparator, ObjectClass* newObject) noexcept { const int index = findInsertIndexInSortedArray (comparator, data.elements.getData(), newObject, 0, numUsed); if (index > 0 && comparator.compareElements (newObject, data.elements [index - 1]) == 0) set (index - 1, newObject); // replace an existing object that matches else insert (index, newObject); // no match, so insert the new one } /** Finds the index of an object in the array, assuming that the array is sorted. This will use a comparator to do a binary-chop to find the index of the given element, if it exists. If the array isn't sorted, the behaviour of this method will be unpredictable. @param comparator the comparator to use to compare the elements - see the sort() method for details about the form this object should take @param objectToLookFor the object to search for @returns the index of the element, or -1 if it's not found @see addSorted, sort */ template int indexOfSorted (ElementComparator& comparator, const ObjectClass* const objectToLookFor) const noexcept { ignoreUnused (comparator); int s = 0, e = numUsed; while (s < e) { if (comparator.compareElements (objectToLookFor, data.elements [s]) == 0) return s; const int halfway = (s + e) / 2; if (halfway == s) break; if (comparator.compareElements (objectToLookFor, data.elements [halfway]) >= 0) s = halfway; else e = halfway; } return -1; } //============================================================================== /** Removes an object from the array. This will remove the object at a given index and move back all the subsequent objects to close the gap. If the index passed in is out-of-range, nothing will happen. The object that is removed will have its reference count decreased, and may be deleted if not referenced from elsewhere. @param indexToRemove the index of the element to remove @see removeObject, removeRange */ void remove (const int indexToRemove) { if (isPositiveAndBelow (indexToRemove, numUsed)) { ObjectClass** const e = data.elements + indexToRemove; if (ObjectClass* o = *e) releaseObject (o); --numUsed; const int numberToShift = numUsed - indexToRemove; if (numberToShift > 0) memmove (e, e + 1, sizeof (ObjectClass*) * (size_t) numberToShift); if ((numUsed << 1) < data.numAllocated) minimiseStorageOverheads(); } } /** Removes and returns an object from the array. This will remove the object at a given index and return it, moving back all the subsequent objects to close the gap. If the index passed in is out-of-range, nothing will happen and a null pointer will be returned. @param indexToRemove the index of the element to remove @see remove, removeObject, removeRange */ ObjectClassPtr removeAndReturn (const int indexToRemove) { ObjectClassPtr removedItem; if (isPositiveAndBelow (indexToRemove, numUsed)) { ObjectClass** const e = data.elements + indexToRemove; if (ObjectClass* o = *e) { removedItem = o; releaseObject (o); } --numUsed; const int numberToShift = numUsed - indexToRemove; if (numberToShift > 0) memmove (e, e + 1, sizeof (ObjectClass*) * (size_t) numberToShift); if ((numUsed << 1) < data.numAllocated) minimiseStorageOverheads(); } return removedItem; } /** Removes the first occurrence of a specified object from the array. If the item isn't found, no action is taken. If it is found, it is removed and has its reference count decreased. @param objectToRemove the object to try to remove @see remove, removeRange */ void removeObject (ObjectClass* const objectToRemove) { remove (indexOf (objectToRemove)); } /** Removes a range of objects from the array. This will remove a set of objects, starting from the given index, and move any subsequent elements down to close the gap. If the range extends beyond the bounds of the array, it will be safely clipped to the size of the array. The objects that are removed will have their reference counts decreased, and may be deleted if not referenced from elsewhere. @param startIndex the index of the first object to remove @param numberToRemove how many objects should be removed @see remove, removeObject */ void removeRange (const int startIndex, const int numberToRemove) { const int start = jlimit (0, numUsed, startIndex); const int endIndex = jlimit (0, numUsed, startIndex + numberToRemove); if (endIndex > start) { int i; for (i = start; i < endIndex; ++i) { if (ObjectClass* o = data.elements[i]) { releaseObject (o); data.elements[i] = nullptr; // (in case one of the destructors accesses this array and hits a dangling pointer) } } const int rangeSize = endIndex - start; ObjectClass** e = data.elements + start; i = numUsed - endIndex; numUsed -= rangeSize; while (--i >= 0) { *e = e [rangeSize]; ++e; } if ((numUsed << 1) < data.numAllocated) minimiseStorageOverheads(); } } /** Removes the last n objects from the array. The objects that are removed will have their reference counts decreased, and may be deleted if not referenced from elsewhere. @param howManyToRemove how many objects to remove from the end of the array @see remove, removeObject, removeRange */ void removeLast (int howManyToRemove = 1) { if (howManyToRemove > numUsed) howManyToRemove = numUsed; while (--howManyToRemove >= 0) remove (numUsed - 1); } /** Swaps a pair of objects in the array. If either of the indexes passed in is out-of-range, nothing will happen, otherwise the two objects at these positions will be exchanged. */ void swap (const int index1, const int index2) noexcept { if (isPositiveAndBelow (index1, numUsed) && isPositiveAndBelow (index2, numUsed)) { std::swap (data.elements [index1], data.elements [index2]); } } /** Moves one of the objects to a different position. This will move the object to a specified index, shuffling along any intervening elements as required. So for example, if you have the array { 0, 1, 2, 3, 4, 5 } then calling move (2, 4) would result in { 0, 1, 3, 4, 2, 5 }. @param currentIndex the index of the object to be moved. If this isn't a valid index, then nothing will be done @param newIndex the index at which you'd like this object to end up. If this is less than zero, it will be moved to the end of the array */ void move (const int currentIndex, int newIndex) noexcept { if (currentIndex != newIndex) { if (isPositiveAndBelow (currentIndex, numUsed)) { if (! isPositiveAndBelow (newIndex, numUsed)) newIndex = numUsed - 1; ObjectClass* const value = data.elements [currentIndex]; if (newIndex > currentIndex) { memmove (data.elements + currentIndex, data.elements + currentIndex + 1, sizeof (ObjectClass*) * (size_t) (newIndex - currentIndex)); } else { memmove (data.elements + newIndex + 1, data.elements + newIndex, sizeof (ObjectClass*) * (size_t) (currentIndex - newIndex)); } data.elements [newIndex] = value; } } } //============================================================================== /** This swaps the contents of this array with those of another array. If you need to exchange two arrays, this is vastly quicker than using copy-by-value because it just swaps their internal pointers. */ template void swapWith (OtherArrayType& otherArray) noexcept { data.swapWith (otherArray.data); std::swap (numUsed, otherArray.numUsed); } //============================================================================== /** Compares this array to another one. @returns true only if the other array contains the same objects in the same order */ bool operator== (const ReferenceCountedArray& other) const noexcept { if (numUsed != other.numUsed) return false; for (int i = numUsed; --i >= 0;) if (data.elements [i] != other.data.elements [i]) return false; return true; } /** Compares this array to another one. @see operator== */ bool operator!= (const ReferenceCountedArray& other) const noexcept { return ! operator== (other); } //============================================================================== /** Sorts the elements in the array. This will use a comparator object to sort the elements into order. The object passed must have a method of the form: @code int compareElements (ElementType first, ElementType second); @endcode ..and this method must return: - a value of < 0 if the first comes before the second - a value of 0 if the two objects are equivalent - a value of > 0 if the second comes before the first To improve performance, the compareElements() method can be declared as static or const. @param comparator the comparator to use for comparing elements. @param retainOrderOfEquivalentItems if this is true, then items which the comparator says are equivalent will be kept in the order in which they currently appear in the array. This is slower to perform, but may be important in some cases. If it's false, a faster algorithm is used, but equivalent elements may be rearranged. @see sortArray */ template void sort (ElementComparator& comparator, const bool retainOrderOfEquivalentItems = false) const noexcept { ignoreUnused (comparator); // if you pass in an object with a static compareElements() method, this // avoids getting warning messages about the parameter being unused sortArray (comparator, data.elements.getData(), 0, size() - 1, retainOrderOfEquivalentItems); } //============================================================================== /** Reduces the amount of storage being used by the array. Arrays typically allocate slightly more storage than they need, and after removing elements, they may have quite a lot of unused space allocated. This method will reduce the amount of allocated storage to a minimum. */ void minimiseStorageOverheads() noexcept { data.shrinkToNoMoreThan (numUsed); } /** Increases the array's internal storage to hold a minimum number of elements. Calling this before adding a large known number of elements means that the array won't have to keep dynamically resizing itself as the elements are added, and it'll therefore be more efficient. */ void ensureStorageAllocated (const int minNumElements) { data.ensureAllocatedSize (minNumElements); } private: //============================================================================== ArrayAllocationBase data; int numUsed; void releaseAllObjects() { while (numUsed > 0) if (ObjectClass* o = data.elements [--numUsed]) releaseObject (o); jassert (numUsed == 0); } static void releaseObject (ObjectClass* o) { if (o->decReferenceCountWithoutDeleting()) delete o; } }; } #endif // WATER_REFERENCECOUNTEDARRAY_H_INCLUDED