/* * Carla FluidSynth Plugin * Copyright (C) 2011-2014 Filipe Coelho * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * For a full copy of the GNU General Public License see the doc/GPL.txt file. */ #include "CarlaPluginInternal.hpp" #include "CarlaEngine.hpp" #ifdef HAVE_FLUIDSYNTH #include "CarlaMathUtils.hpp" #include "juce_core/juce_core.h" #include #if (FLUIDSYNTH_VERSION_MAJOR >= 1 && FLUIDSYNTH_VERSION_MINOR >= 1 && FLUIDSYNTH_VERSION_MICRO >= 4) # define FLUIDSYNTH_VERSION_NEW_API #endif #define FLUID_DEFAULT_POLYPHONY 64 using juce::String; using juce::StringArray; CARLA_BACKEND_START_NAMESPACE // ------------------------------------------------------------------------------------------------------------------- // Fallback data static const ExternalMidiNote kExternalMidiNoteFallback = { -1, 0, 0 }; // ------------------------------------------------------------------------------------------------------------------- class CarlaPluginFluidSynth : public CarlaPlugin { public: CarlaPluginFluidSynth(CarlaEngine* const engine, const uint id, const bool use16Outs) : CarlaPlugin(engine, id), kUse16Outs(use16Outs), fSettings(nullptr), fSynth(nullptr), fSynthId(0), fAudio16Buffers(nullptr), fLabel(nullptr) { carla_debug("CarlaPluginFluidSynth::CarlaPluginFluidSynth(%p, %i, %s)", engine, id, bool2str(use16Outs)); FloatVectorOperations::clear(fParamBuffers, FluidSynthParametersMax); carla_fill(fCurMidiProgs, 0, MAX_MIDI_CHANNELS); // create settings fSettings = new_fluid_settings(); CARLA_SAFE_ASSERT_RETURN(fSettings != nullptr,); // define settings fluid_settings_setint(fSettings, "synth.audio-channels", use16Outs ? 16 : 1); fluid_settings_setint(fSettings, "synth.audio-groups", use16Outs ? 16 : 1); fluid_settings_setnum(fSettings, "synth.sample-rate", pData->engine->getSampleRate()); //fluid_settings_setnum(fSettings, "synth.cpu-cores", 2); fluid_settings_setint(fSettings, "synth.parallel-render", 1); fluid_settings_setint(fSettings, "synth.threadsafe-api", 0); // create synth fSynth = new_fluid_synth(fSettings); CARLA_SAFE_ASSERT_RETURN(fSynth != nullptr,); #ifdef FLUIDSYNTH_VERSION_NEW_API fluid_synth_set_sample_rate(fSynth, (float)pData->engine->getSampleRate()); #endif // set default values fluid_synth_set_reverb_on(fSynth, 1); fluid_synth_set_reverb(fSynth, FLUID_REVERB_DEFAULT_ROOMSIZE, FLUID_REVERB_DEFAULT_DAMP, FLUID_REVERB_DEFAULT_WIDTH, FLUID_REVERB_DEFAULT_LEVEL); fluid_synth_set_chorus_on(fSynth, 1); fluid_synth_set_chorus(fSynth, FLUID_CHORUS_DEFAULT_N, FLUID_CHORUS_DEFAULT_LEVEL, FLUID_CHORUS_DEFAULT_SPEED, FLUID_CHORUS_DEFAULT_DEPTH, FLUID_CHORUS_DEFAULT_TYPE); fluid_synth_set_polyphony(fSynth, FLUID_DEFAULT_POLYPHONY); fluid_synth_set_gain(fSynth, 1.0f); for (int i=0; i < MAX_MIDI_CHANNELS; ++i) fluid_synth_set_interp_method(fSynth, i, FLUID_INTERP_DEFAULT); } ~CarlaPluginFluidSynth() override { carla_debug("CarlaPluginFluidSynth::~CarlaPluginFluidSynth()"); pData->singleMutex.lock(); pData->masterMutex.lock(); if (pData->client != nullptr && pData->client->isActive()) pData->client->deactivate(); if (pData->active) { deactivate(); pData->active = false; } if (fSynth != nullptr) { delete_fluid_synth(fSynth); fSynth = nullptr; } if (fSettings != nullptr) { delete_fluid_settings(fSettings); fSettings = nullptr; } if (fLabel != nullptr) { delete[] fLabel; fLabel = nullptr; } clearBuffers(); } // ------------------------------------------------------------------- // Information (base) PluginType getType() const noexcept override { return PLUGIN_SF2; } PluginCategory getCategory() const noexcept override { return PLUGIN_CATEGORY_SYNTH; } // ------------------------------------------------------------------- // Information (count) uint32_t getParameterScalePointCount(const uint32_t parameterId) const noexcept override { switch (parameterId) { case FluidSynthChorusType: return 2; case FluidSynthInterpolation: return 4; default: return 0; } } // ------------------------------------------------------------------- // Information (current data) // nothing // ------------------------------------------------------------------- // Information (per-plugin data) uint getOptionsAvailable() const noexcept override { uint options = 0x0; options |= PLUGIN_OPTION_MAP_PROGRAM_CHANGES; options |= PLUGIN_OPTION_SEND_CONTROL_CHANGES; options |= PLUGIN_OPTION_SEND_CHANNEL_PRESSURE; options |= PLUGIN_OPTION_SEND_PITCHBEND; options |= PLUGIN_OPTION_SEND_ALL_SOUND_OFF; return options; } float getParameterValue(const uint32_t parameterId) const noexcept override { CARLA_SAFE_ASSERT_RETURN(parameterId < pData->param.count, 0.0f); return fParamBuffers[parameterId]; } float getParameterScalePointValue(const uint32_t parameterId, const uint32_t scalePointId) const noexcept override { switch (parameterId) { case FluidSynthChorusType: switch (scalePointId) { case 0: return FLUID_CHORUS_MOD_SINE; case 1: return FLUID_CHORUS_MOD_TRIANGLE; default: return FLUID_CHORUS_DEFAULT_TYPE; } case FluidSynthInterpolation: switch (scalePointId) { case 0: return FLUID_INTERP_NONE; case 1: return FLUID_INTERP_LINEAR; case 2: return FLUID_INTERP_4THORDER; case 3: return FLUID_INTERP_7THORDER; default: return FLUID_INTERP_DEFAULT; } default: return 0.0f; } } void getLabel(char* const strBuf) const noexcept override { if (fLabel != nullptr) { std::strncpy(strBuf, fLabel, STR_MAX); return; } CarlaPlugin::getLabel(strBuf); } void getMaker(char* const strBuf) const noexcept override { std::strncpy(strBuf, "FluidSynth SF2 engine", STR_MAX); } void getCopyright(char* const strBuf) const noexcept override { std::strncpy(strBuf, "GNU GPL v2+", STR_MAX); } void getRealName(char* const strBuf) const noexcept override { getLabel(strBuf); } void getParameterName(const uint32_t parameterId, char* const strBuf) const noexcept override { CARLA_SAFE_ASSERT_RETURN(parameterId < pData->param.count,); switch (parameterId) { case FluidSynthReverbOnOff: std::strncpy(strBuf, "Reverb On/Off", STR_MAX); return; case FluidSynthReverbRoomSize: std::strncpy(strBuf, "Reverb Room Size", STR_MAX); return; case FluidSynthReverbDamp: std::strncpy(strBuf, "Reverb Damp", STR_MAX); return; case FluidSynthReverbLevel: std::strncpy(strBuf, "Reverb Level", STR_MAX); return; case FluidSynthReverbWidth: std::strncpy(strBuf, "Reverb Width", STR_MAX); return; case FluidSynthChorusOnOff: std::strncpy(strBuf, "Chorus On/Off", STR_MAX); return; case FluidSynthChorusNr: std::strncpy(strBuf, "Chorus Voice Count", STR_MAX); return; case FluidSynthChorusLevel: std::strncpy(strBuf, "Chorus Level", STR_MAX); return; case FluidSynthChorusSpeedHz: std::strncpy(strBuf, "Chorus Speed", STR_MAX); return; case FluidSynthChorusDepthMs: std::strncpy(strBuf, "Chorus Depth", STR_MAX); return; case FluidSynthChorusType: std::strncpy(strBuf, "Chorus Type", STR_MAX); return; case FluidSynthPolyphony: std::strncpy(strBuf, "Polyphony", STR_MAX); return; case FluidSynthInterpolation: std::strncpy(strBuf, "Interpolation", STR_MAX); return; case FluidSynthVoiceCount: std::strncpy(strBuf, "Voice Count", STR_MAX); return; } CarlaPlugin::getParameterName(parameterId, strBuf); } void getParameterUnit(const uint32_t parameterId, char* const strBuf) const noexcept override { CARLA_SAFE_ASSERT_RETURN(parameterId < pData->param.count,); switch (parameterId) { case FluidSynthChorusSpeedHz: std::strncpy(strBuf, "Hz", STR_MAX); return; case FluidSynthChorusDepthMs: std::strncpy(strBuf, "ms", STR_MAX); return; } CarlaPlugin::getParameterUnit(parameterId, strBuf); } void getParameterScalePointLabel(const uint32_t parameterId, const uint32_t scalePointId, char* const strBuf) const noexcept override { CARLA_SAFE_ASSERT_RETURN(parameterId < pData->param.count,); CARLA_SAFE_ASSERT_RETURN(scalePointId < getParameterScalePointCount(parameterId),); switch (parameterId) { case FluidSynthChorusType: switch (scalePointId) { case 0: std::strncpy(strBuf, "Sine wave", STR_MAX); return; case 1: std::strncpy(strBuf, "Triangle wave", STR_MAX); return; } case FluidSynthInterpolation: switch (scalePointId) { case 0: std::strncpy(strBuf, "None", STR_MAX); return; case 1: std::strncpy(strBuf, "Straight-line", STR_MAX); return; case 2: std::strncpy(strBuf, "Fourth-order", STR_MAX); return; case 3: std::strncpy(strBuf, "Seventh-order", STR_MAX); return; } } CarlaPlugin::getParameterScalePointLabel(parameterId, scalePointId, strBuf); } // ------------------------------------------------------------------- // Set data (state) void prepareForSave() override { char strBuf[STR_MAX+1]; std::snprintf(strBuf, STR_MAX, "%i:%i:%i:%i:%i:%i:%i:%i:%i:%i:%i:%i:%i:%i:%i:%i", fCurMidiProgs[0], fCurMidiProgs[1], fCurMidiProgs[2], fCurMidiProgs[3], fCurMidiProgs[4], fCurMidiProgs[5], fCurMidiProgs[6], fCurMidiProgs[7], fCurMidiProgs[8], fCurMidiProgs[9], fCurMidiProgs[10], fCurMidiProgs[11], fCurMidiProgs[12], fCurMidiProgs[13], fCurMidiProgs[14], fCurMidiProgs[15]); CarlaPlugin::setCustomData(CUSTOM_DATA_TYPE_STRING, "midiPrograms", strBuf, false); } // ------------------------------------------------------------------- // Set data (internal stuff) void setCtrlChannel(const int8_t channel, const bool sendOsc, const bool sendCallback) noexcept override { if (channel >= 0 && channel < MAX_MIDI_CHANNELS) pData->midiprog.current = fCurMidiProgs[channel]; CarlaPlugin::setCtrlChannel(channel, sendOsc, sendCallback); } // ------------------------------------------------------------------- // Set data (plugin-specific stuff) void setParameterValue(const uint32_t parameterId, const float value, const bool sendGui, const bool sendOsc, const bool sendCallback) noexcept override { CARLA_SAFE_ASSERT_RETURN(parameterId < pData->param.count,); const float fixedValue(pData->param.getFixedValue(parameterId, value)); fParamBuffers[parameterId] = fixedValue; { const ScopedSingleProcessLocker spl(this, (sendGui || sendOsc || sendCallback)); switch (parameterId) { case FluidSynthReverbOnOff: try { fluid_synth_set_reverb_on(fSynth, (fixedValue > 0.5f) ? 1 : 0); } catch(...) {} break; case FluidSynthReverbRoomSize: case FluidSynthReverbDamp: case FluidSynthReverbLevel: case FluidSynthReverbWidth: try { fluid_synth_set_reverb(fSynth, fParamBuffers[FluidSynthReverbRoomSize], fParamBuffers[FluidSynthReverbDamp], fParamBuffers[FluidSynthReverbWidth], fParamBuffers[FluidSynthReverbLevel]); } catch(...) {} break; case FluidSynthChorusOnOff: try { fluid_synth_set_chorus_on(fSynth, (value > 0.5f) ? 1 : 0); } catch(...) {} break; case FluidSynthChorusNr: case FluidSynthChorusLevel: case FluidSynthChorusSpeedHz: case FluidSynthChorusDepthMs: case FluidSynthChorusType: try { fluid_synth_set_chorus(fSynth, (int)fParamBuffers[FluidSynthChorusNr], fParamBuffers[FluidSynthChorusLevel], fParamBuffers[FluidSynthChorusSpeedHz], fParamBuffers[FluidSynthChorusDepthMs], (int)fParamBuffers[FluidSynthChorusType]); } catch(...) {} break; case FluidSynthPolyphony: try { fluid_synth_set_polyphony(fSynth, (int)value); } catch(...) {} break; case FluidSynthInterpolation: for (int i=0; i < MAX_MIDI_CHANNELS; ++i) { try { fluid_synth_set_interp_method(fSynth, i, (int)value); } catch(...) { break; } } break; default: break; } } CarlaPlugin::setParameterValue(parameterId, value, sendGui, sendOsc, sendCallback); } void setCustomData(const char* const type, const char* const key, const char* const value, const bool sendGui) override { CARLA_SAFE_ASSERT_RETURN(fSynth != nullptr,); CARLA_SAFE_ASSERT_RETURN(type != nullptr && type[0] != '\0',); CARLA_SAFE_ASSERT_RETURN(key != nullptr && key[0] != '\0',); CARLA_SAFE_ASSERT_RETURN(value != nullptr && value[0] != '\0',); carla_debug("CarlaPluginFluidSynth::setCustomData(%s, \"%s\", \"%s\", %s)", type, key, value, bool2str(sendGui)); if (std::strcmp(type, CUSTOM_DATA_TYPE_PROPERTY) == 0) return CarlaPlugin::setCustomData(type, key, value, sendGui); if (std::strcmp(type, CUSTOM_DATA_TYPE_STRING) != 0) return carla_stderr2("CarlaPluginFluidSynth::setCustomData(\"%s\", \"%s\", \"%s\", %s) - type is not string", type, key, value, bool2str(sendGui)); if (std::strcmp(key, "midiPrograms") != 0) return carla_stderr2("CarlaPluginFluidSynth::setCustomData(\"%s\", \"%s\", \"%s\", %s) - type is not string", type, key, value, bool2str(sendGui)); StringArray midiProgramList(StringArray::fromTokens(value, ":", "")); if (midiProgramList.size() == MAX_MIDI_CHANNELS) { uint8_t channel = 0; for (String *it=midiProgramList.begin(), *end=midiProgramList.end(); it != end; ++it) { const int index(it->getIntValue()); if (index >= 0 && index < static_cast(pData->midiprog.count)) { const uint32_t bank = pData->midiprog.data[index].bank; const uint32_t program = pData->midiprog.data[index].program; fluid_synth_program_select(fSynth, channel, fSynthId, bank, program); fCurMidiProgs[channel] = index; if (pData->ctrlChannel == static_cast(channel)) { pData->midiprog.current = index; pData->engine->callback(ENGINE_CALLBACK_MIDI_PROGRAM_CHANGED, pData->id, index, 0, 0.0f, nullptr); } } ++channel; } CARLA_SAFE_ASSERT(channel == MAX_MIDI_CHANNELS); } CarlaPlugin::setCustomData(type, key, value, sendGui); } void setMidiProgram(const int32_t index, const bool sendGui, const bool sendOsc, const bool sendCallback) noexcept override { CARLA_SAFE_ASSERT_RETURN(fSynth != nullptr,); CARLA_SAFE_ASSERT_RETURN(index >= -1 && index < static_cast(pData->midiprog.count),); if (index >= 0 && pData->ctrlChannel >= 0 && pData->ctrlChannel < MAX_MIDI_CHANNELS) { const uint32_t bank = pData->midiprog.data[index].bank; const uint32_t program = pData->midiprog.data[index].program; //const ScopedSingleProcessLocker spl(this, (sendGui || sendOsc || sendCallback)); try { fluid_synth_program_select(fSynth, pData->ctrlChannel, fSynthId, bank, program); } catch(...) {} fCurMidiProgs[pData->ctrlChannel] = index; } CarlaPlugin::setMidiProgram(index, sendGui, sendOsc, sendCallback); } // ------------------------------------------------------------------- // Set ui stuff // nothing // ------------------------------------------------------------------- // Plugin state void reload() override { CARLA_SAFE_ASSERT_RETURN(pData->engine != nullptr,); CARLA_SAFE_ASSERT_RETURN(fSynth != nullptr,); carla_debug("CarlaPluginFluidSynth::reload() - start"); const EngineProcessMode processMode(pData->engine->getProccessMode()); // Safely disable plugin for reload const ScopedDisabler sd(this); if (pData->active) deactivate(); clearBuffers(); uint32_t aOuts, params; aOuts = kUse16Outs ? 32 : 2; params = FluidSynthParametersMax; pData->audioOut.createNew(aOuts); pData->param.createNew(params, false); const uint portNameSize(pData->engine->getMaxPortNameSize()); CarlaString portName; // --------------------------------------- // Audio Outputs if (kUse16Outs) { for (uint32_t i=0; i < 32; ++i) { portName.clear(); if (processMode == ENGINE_PROCESS_MODE_SINGLE_CLIENT) { portName = pData->name; portName += ":"; } portName += "out-"; if ((i+2)/2 < 9) portName += "0"; portName += CarlaString((i+2)/2); if (i % 2 == 0) portName += "L"; else portName += "R"; portName.truncate(portNameSize); pData->audioOut.ports[i].port = (CarlaEngineAudioPort*)pData->client->addPort(kEnginePortTypeAudio, portName, false, i); pData->audioOut.ports[i].rindex = i; } fAudio16Buffers = new float*[aOuts]; for (uint32_t i=0; i < aOuts; ++i) fAudio16Buffers[i] = nullptr; } else { // out-left portName.clear(); if (processMode == ENGINE_PROCESS_MODE_SINGLE_CLIENT) { portName = pData->name; portName += ":"; } portName += "out-left"; portName.truncate(portNameSize); pData->audioOut.ports[0].port = (CarlaEngineAudioPort*)pData->client->addPort(kEnginePortTypeAudio, portName, false, 0); pData->audioOut.ports[0].rindex = 0; // out-right portName.clear(); if (processMode == ENGINE_PROCESS_MODE_SINGLE_CLIENT) { portName = pData->name; portName += ":"; } portName += "out-right"; portName.truncate(portNameSize); pData->audioOut.ports[1].port = (CarlaEngineAudioPort*)pData->client->addPort(kEnginePortTypeAudio, portName, false, 1); pData->audioOut.ports[1].rindex = 1; } // --------------------------------------- // Event Input { portName.clear(); if (processMode == ENGINE_PROCESS_MODE_SINGLE_CLIENT) { portName = pData->name; portName += ":"; } portName += "events-in"; portName.truncate(portNameSize); pData->event.portIn = (CarlaEngineEventPort*)pData->client->addPort(kEnginePortTypeEvent, portName, true, 0); } // --------------------------------------- // Event Output { portName.clear(); if (processMode == ENGINE_PROCESS_MODE_SINGLE_CLIENT) { portName = pData->name; portName += ":"; } portName += "events-out"; portName.truncate(portNameSize); pData->event.portOut = (CarlaEngineEventPort*)pData->client->addPort(kEnginePortTypeEvent, portName, false, 0); } // --------------------------------------- // Parameters { int j; // ---------------------- j = FluidSynthReverbOnOff; pData->param.data[j].type = PARAMETER_INPUT; pData->param.data[j].hints = PARAMETER_IS_ENABLED /*| PARAMETER_IS_AUTOMABLE*/ | PARAMETER_IS_BOOLEAN; pData->param.data[j].index = j; pData->param.data[j].rindex = j; pData->param.ranges[j].min = 0.0f; pData->param.ranges[j].max = 1.0f; pData->param.ranges[j].def = 1.0f; pData->param.ranges[j].step = 1.0f; pData->param.ranges[j].stepSmall = 1.0f; pData->param.ranges[j].stepLarge = 1.0f; // ---------------------- j = FluidSynthReverbRoomSize; pData->param.data[j].type = PARAMETER_INPUT; pData->param.data[j].hints = PARAMETER_IS_ENABLED /*| PARAMETER_IS_AUTOMABLE*/; pData->param.data[j].index = j; pData->param.data[j].rindex = j; pData->param.ranges[j].min = 0.0f; pData->param.ranges[j].max = 1.2f; pData->param.ranges[j].def = FLUID_REVERB_DEFAULT_ROOMSIZE; pData->param.ranges[j].step = 0.01f; pData->param.ranges[j].stepSmall = 0.0001f; pData->param.ranges[j].stepLarge = 0.1f; // ---------------------- j = FluidSynthReverbDamp; pData->param.data[j].type = PARAMETER_INPUT; pData->param.data[j].hints = PARAMETER_IS_ENABLED /*| PARAMETER_IS_AUTOMABLE*/; pData->param.data[j].index = j; pData->param.data[j].rindex = j; pData->param.ranges[j].min = 0.0f; pData->param.ranges[j].max = 1.0f; pData->param.ranges[j].def = FLUID_REVERB_DEFAULT_DAMP; pData->param.ranges[j].step = 0.01f; pData->param.ranges[j].stepSmall = 0.0001f; pData->param.ranges[j].stepLarge = 0.1f; // ---------------------- j = FluidSynthReverbLevel; pData->param.data[j].type = PARAMETER_INPUT; pData->param.data[j].hints = PARAMETER_IS_ENABLED /*| PARAMETER_IS_AUTOMABLE*/; pData->param.data[j].index = j; pData->param.data[j].rindex = j; pData->param.data[j].midiCC = MIDI_CONTROL_REVERB_SEND_LEVEL; pData->param.ranges[j].min = 0.0f; pData->param.ranges[j].max = 1.0f; pData->param.ranges[j].def = FLUID_REVERB_DEFAULT_LEVEL; pData->param.ranges[j].step = 0.01f; pData->param.ranges[j].stepSmall = 0.0001f; pData->param.ranges[j].stepLarge = 0.1f; // ---------------------- j = FluidSynthReverbWidth; pData->param.data[j].type = PARAMETER_INPUT; pData->param.data[j].hints = PARAMETER_IS_ENABLED /*| PARAMETER_IS_AUTOMABLE*/; pData->param.data[j].index = j; pData->param.data[j].rindex = j; pData->param.ranges[j].min = 0.0f; pData->param.ranges[j].max = 10.0f; // should be 100, but that sounds too much pData->param.ranges[j].def = FLUID_REVERB_DEFAULT_WIDTH; pData->param.ranges[j].step = 0.01f; pData->param.ranges[j].stepSmall = 0.0001f; pData->param.ranges[j].stepLarge = 0.1f; // ---------------------- j = FluidSynthChorusOnOff; pData->param.data[j].type = PARAMETER_INPUT; pData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_BOOLEAN; pData->param.data[j].index = j; pData->param.data[j].rindex = j; pData->param.ranges[j].min = 0.0f; pData->param.ranges[j].max = 1.0f; pData->param.ranges[j].def = 1.0f; pData->param.ranges[j].step = 1.0f; pData->param.ranges[j].stepSmall = 1.0f; pData->param.ranges[j].stepLarge = 1.0f; // ---------------------- j = FluidSynthChorusNr; pData->param.data[j].type = PARAMETER_INPUT; pData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_INTEGER; pData->param.data[j].index = j; pData->param.data[j].rindex = j; pData->param.ranges[j].min = 0.0f; pData->param.ranges[j].max = 99.0f; pData->param.ranges[j].def = FLUID_CHORUS_DEFAULT_N; pData->param.ranges[j].step = 1.0f; pData->param.ranges[j].stepSmall = 1.0f; pData->param.ranges[j].stepLarge = 10.0f; // ---------------------- j = FluidSynthChorusLevel; pData->param.data[j].type = PARAMETER_INPUT; pData->param.data[j].hints = PARAMETER_IS_ENABLED; pData->param.data[j].index = j; pData->param.data[j].rindex = j; pData->param.ranges[j].min = 0.0f; pData->param.ranges[j].max = 10.0f; pData->param.ranges[j].def = FLUID_CHORUS_DEFAULT_LEVEL; pData->param.ranges[j].step = 0.01f; pData->param.ranges[j].stepSmall = 0.0001f; pData->param.ranges[j].stepLarge = 0.1f; // ---------------------- j = FluidSynthChorusSpeedHz; pData->param.data[j].type = PARAMETER_INPUT; pData->param.data[j].hints = PARAMETER_IS_ENABLED; pData->param.data[j].index = j; pData->param.data[j].rindex = j; pData->param.ranges[j].min = 0.29f; pData->param.ranges[j].max = 5.0f; pData->param.ranges[j].def = FLUID_CHORUS_DEFAULT_SPEED; pData->param.ranges[j].step = 0.01f; pData->param.ranges[j].stepSmall = 0.0001f; pData->param.ranges[j].stepLarge = 0.1f; // ---------------------- j = FluidSynthChorusDepthMs; pData->param.data[j].type = PARAMETER_INPUT; pData->param.data[j].hints = PARAMETER_IS_ENABLED; pData->param.data[j].index = j; pData->param.data[j].rindex = j; pData->param.ranges[j].min = 0.0f; pData->param.ranges[j].max = float(2048.0 * 1000.0 / pData->engine->getSampleRate()); // FIXME? pData->param.ranges[j].def = FLUID_CHORUS_DEFAULT_DEPTH; pData->param.ranges[j].step = 0.01f; pData->param.ranges[j].stepSmall = 0.0001f; pData->param.ranges[j].stepLarge = 0.1f; // ---------------------- j = FluidSynthChorusType; pData->param.data[j].type = PARAMETER_INPUT; pData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_INTEGER | PARAMETER_USES_SCALEPOINTS; pData->param.data[j].index = j; pData->param.data[j].rindex = j; pData->param.ranges[j].min = FLUID_CHORUS_MOD_SINE; pData->param.ranges[j].max = FLUID_CHORUS_MOD_TRIANGLE; pData->param.ranges[j].def = FLUID_CHORUS_DEFAULT_TYPE; pData->param.ranges[j].step = 1.0f; pData->param.ranges[j].stepSmall = 1.0f; pData->param.ranges[j].stepLarge = 1.0f; // ---------------------- j = FluidSynthPolyphony; pData->param.data[j].type = PARAMETER_INPUT; pData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_INTEGER; pData->param.data[j].index = j; pData->param.data[j].rindex = j; pData->param.ranges[j].min = 1.0f; pData->param.ranges[j].max = 512.0f; // max theoric is 65535 pData->param.ranges[j].def = (float)fluid_synth_get_polyphony(fSynth); pData->param.ranges[j].step = 1.0f; pData->param.ranges[j].stepSmall = 1.0f; pData->param.ranges[j].stepLarge = 10.0f; // ---------------------- j = FluidSynthInterpolation; pData->param.data[j].type = PARAMETER_INPUT; pData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_INTEGER | PARAMETER_USES_SCALEPOINTS; pData->param.data[j].index = j; pData->param.data[j].rindex = j; pData->param.ranges[j].min = FLUID_INTERP_NONE; pData->param.ranges[j].max = FLUID_INTERP_HIGHEST; pData->param.ranges[j].def = FLUID_INTERP_DEFAULT; pData->param.ranges[j].step = 1.0f; pData->param.ranges[j].stepSmall = 1.0f; pData->param.ranges[j].stepLarge = 1.0f; // ---------------------- j = FluidSynthVoiceCount; pData->param.data[j].type = PARAMETER_OUTPUT; pData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_AUTOMABLE | PARAMETER_IS_INTEGER; pData->param.data[j].index = j; pData->param.data[j].rindex = j; pData->param.ranges[j].min = 0.0f; pData->param.ranges[j].max = 65535.0f; pData->param.ranges[j].def = 0.0f; pData->param.ranges[j].step = 1.0f; pData->param.ranges[j].stepSmall = 1.0f; pData->param.ranges[j].stepLarge = 1.0f; for (j=0; jparam.ranges[j].def; } // --------------------------------------- // plugin hints pData->hints = 0x0; pData->hints |= PLUGIN_IS_SYNTH; pData->hints |= PLUGIN_CAN_VOLUME; pData->hints |= PLUGIN_USES_MULTI_PROGS; if (! kUse16Outs) pData->hints |= PLUGIN_CAN_BALANCE; // extra plugin hints pData->extraHints = 0x0; pData->extraHints |= PLUGIN_EXTRA_HINT_HAS_MIDI_IN; if (! kUse16Outs) pData->extraHints |= PLUGIN_EXTRA_HINT_CAN_RUN_RACK; bufferSizeChanged(pData->engine->getBufferSize()); reloadPrograms(true); if (pData->active) activate(); carla_debug("CarlaPluginFluidSynth::reload() - end"); } void reloadPrograms(const bool doInit) override { carla_debug("CarlaPluginFluidSynth::reloadPrograms(%s)", bool2str(doInit)); // save drum info in case we have one program for it bool hasDrums = false; uint32_t drumIndex, drumProg; drumIndex = drumProg = 0; // Delete old programs pData->midiprog.clear(); // Query new programs uint32_t count = 0; if (fluid_sfont_t* const f_sfont = fluid_synth_get_sfont_by_id(fSynth, fSynthId)) { fluid_preset_t f_preset; // initial check to know how many midi-programs we have f_sfont->iteration_start(f_sfont); for (; f_sfont->iteration_next(f_sfont, &f_preset);) ++count; // sound kits must always have at least 1 midi-program CARLA_SAFE_ASSERT_RETURN(count > 0,); pData->midiprog.createNew(count); // Update data int tmp; uint32_t i = 0; f_sfont->iteration_start(f_sfont); for (; f_sfont->iteration_next(f_sfont, &f_preset);) { CARLA_SAFE_ASSERT_BREAK(i < count); tmp = f_preset.get_banknum(&f_preset); pData->midiprog.data[i].bank = (tmp >= 0) ? static_cast(tmp) : 0; tmp = f_preset.get_num(&f_preset); pData->midiprog.data[i].program = (tmp >= 0) ? static_cast(tmp) : 0; pData->midiprog.data[i].name = carla_strdup(f_preset.get_name(&f_preset)); if (pData->midiprog.data[i].bank == 128 && ! hasDrums) { hasDrums = true; drumIndex = i; drumProg = pData->midiprog.data[i].program; } ++i; } } else { // failing means 0 midi-programs, it shouldn't happen! carla_safe_assert("fluid_sfont_t* const f_sfont = fluid_synth_get_sfont_by_id(fSynth, fSynthId)", __FILE__, __LINE__); return; } #if defined(HAVE_LIBLO) && ! defined(BUILD_BRIDGE) // Update OSC Names if (pData->engine->isOscControlRegistered() && pData->id < pData->engine->getCurrentPluginCount()) { pData->engine->oscSend_control_set_midi_program_count(pData->id, count); for (uint32_t i=0; i < count; ++i) pData->engine->oscSend_control_set_midi_program_data(pData->id, i, pData->midiprog.data[i].bank, pData->midiprog.data[i].program, pData->midiprog.data[i].name); } #endif if (doInit) { fluid_synth_program_reset(fSynth); // select first program, or 128 for ch10 for (int i=0; i < MAX_MIDI_CHANNELS && i != 9; ++i) { #ifdef FLUIDSYNTH_VERSION_NEW_API fluid_synth_set_channel_type(fSynth, i, CHANNEL_TYPE_MELODIC); #endif fluid_synth_program_select(fSynth, i, fSynthId, pData->midiprog.data[0].bank, pData->midiprog.data[0].program); fCurMidiProgs[i] = 0; } if (hasDrums) { #ifdef FLUIDSYNTH_VERSION_NEW_API fluid_synth_set_channel_type(fSynth, 9, CHANNEL_TYPE_DRUM); #endif fluid_synth_program_select(fSynth, 9, fSynthId, 128, drumProg); fCurMidiProgs[9] = static_cast(drumIndex); } else { #ifdef FLUIDSYNTH_VERSION_NEW_API fluid_synth_set_channel_type(fSynth, 9, CHANNEL_TYPE_MELODIC); #endif fluid_synth_program_select(fSynth, 9, fSynthId, pData->midiprog.data[0].bank, pData->midiprog.data[0].program); fCurMidiProgs[9] = 0; } pData->midiprog.current = 0; } else { pData->engine->callback(ENGINE_CALLBACK_RELOAD_PROGRAMS, pData->id, 0, 0, 0.0f, nullptr); } } // ------------------------------------------------------------------- // Plugin processing void process(const float** const, float** const audioOut, const float** const, float** const, const uint32_t frames) override { // -------------------------------------------------------------------------------------------------------- // Check if active if (! pData->active) { // disable any output sound for (uint32_t i=0; i < pData->audioOut.count; ++i) FloatVectorOperations::clear(audioOut[i], static_cast(frames)); return; } // -------------------------------------------------------------------------------------------------------- // Check if needs reset if (pData->needsReset) { if (pData->options & PLUGIN_OPTION_SEND_ALL_SOUND_OFF) { for (int i=0; i < MAX_MIDI_CHANNELS; ++i) { #ifdef FLUIDSYNTH_VERSION_NEW_API fluid_synth_all_notes_off(fSynth, i); fluid_synth_all_sounds_off(fSynth, i); #else fluid_synth_cc(fSynth, i, MIDI_CONTROL_ALL_SOUND_OFF, 0); fluid_synth_cc(fSynth, i, MIDI_CONTROL_ALL_NOTES_OFF, 0); #endif } } else if (pData->ctrlChannel >= 0 && pData->ctrlChannel < MAX_MIDI_CHANNELS) { for (int i=0; i < MAX_MIDI_NOTE; ++i) fluid_synth_noteoff(fSynth, pData->ctrlChannel, i); } pData->needsReset = false; } // -------------------------------------------------------------------------------------------------------- // Event Input and Processing { // ---------------------------------------------------------------------------------------------------- // MIDI Input (External) if (pData->extNotes.mutex.tryLock()) { for (RtLinkedList::Itenerator it = pData->extNotes.data.begin2(); it.valid(); it.next()) { const ExternalMidiNote& note(it.getValue(kExternalMidiNoteFallback)); CARLA_SAFE_ASSERT_CONTINUE(note.channel >= 0 && note.channel < MAX_MIDI_CHANNELS); if (note.velo > 0) fluid_synth_noteon(fSynth, note.channel, note.note, note.velo); else fluid_synth_noteoff(fSynth,note.channel, note.note); } pData->extNotes.data.clear(); pData->extNotes.mutex.unlock(); } // End of MIDI Input (External) // ---------------------------------------------------------------------------------------------------- // Event Input (System) #ifndef BUILD_BRIDGE bool allNotesOffSent = false; #endif uint32_t timeOffset = 0; uint32_t nextBankIds[MAX_MIDI_CHANNELS] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 128, 0, 0, 0, 0, 0, 0 }; if (pData->midiprog.current >= 0 && pData->midiprog.count > 0 && pData->ctrlChannel >= 0 && pData->ctrlChannel < MAX_MIDI_CHANNELS) nextBankIds[pData->ctrlChannel] = pData->midiprog.data[pData->midiprog.current].bank; for (uint32_t i=0, numEvents=pData->event.portIn->getEventCount(); i < numEvents; ++i) { const EngineEvent& event(pData->event.portIn->getEvent(i)); if (event.time >= frames) continue; CARLA_ASSERT_INT2(event.time >= timeOffset, event.time, timeOffset); if (event.time > timeOffset) { if (processSingle(audioOut, event.time - timeOffset, timeOffset)) { timeOffset = event.time; if (pData->midiprog.current >= 0 && pData->midiprog.count > 0 && pData->ctrlChannel >= 0 && pData->ctrlChannel < MAX_MIDI_CHANNELS) nextBankIds[pData->ctrlChannel] = pData->midiprog.data[pData->midiprog.current].bank; } } // Control change switch (event.type) { case kEngineEventTypeNull: break; case kEngineEventTypeControl: { const EngineControlEvent& ctrlEvent = event.ctrl; switch (ctrlEvent.type) { case kEngineControlEventTypeNull: break; case kEngineControlEventTypeParameter: { #ifndef BUILD_BRIDGE // Control backend stuff if (event.channel == pData->ctrlChannel) { float value; if (MIDI_IS_CONTROL_BREATH_CONTROLLER(ctrlEvent.param) && (pData->hints & PLUGIN_CAN_DRYWET) != 0) { value = ctrlEvent.value; setDryWet(value, false, false); pData->postponeRtEvent(kPluginPostRtEventParameterChange, PARAMETER_DRYWET, 0, value); } if (MIDI_IS_CONTROL_CHANNEL_VOLUME(ctrlEvent.param) && (pData->hints & PLUGIN_CAN_VOLUME) != 0) { value = ctrlEvent.value*127.0f/100.0f; setVolume(value, false, false); pData->postponeRtEvent(kPluginPostRtEventParameterChange, PARAMETER_VOLUME, 0, value); } if (MIDI_IS_CONTROL_BALANCE(ctrlEvent.param) && (pData->hints & PLUGIN_CAN_BALANCE) != 0) { float left, right; value = ctrlEvent.value/0.5f - 1.0f; if (value < 0.0f) { left = -1.0f; right = (value*2.0f)+1.0f; } else if (value > 0.0f) { left = (value*2.0f)-1.0f; right = 1.0f; } else { left = -1.0f; right = 1.0f; } setBalanceLeft(left, false, false); setBalanceRight(right, false, false); pData->postponeRtEvent(kPluginPostRtEventParameterChange, PARAMETER_BALANCE_LEFT, 0, left); pData->postponeRtEvent(kPluginPostRtEventParameterChange, PARAMETER_BALANCE_RIGHT, 0, right); } } #endif // Control plugin parameters for (uint32_t k=0; k < pData->param.count; ++k) { if (pData->param.data[k].midiChannel != event.channel) continue; if (pData->param.data[k].midiCC != ctrlEvent.param) continue; if (pData->param.data[k].hints != PARAMETER_INPUT) continue; if ((pData->param.data[k].hints & PARAMETER_IS_AUTOMABLE) == 0) continue; float value; if (pData->param.data[k].hints & PARAMETER_IS_BOOLEAN) { value = (ctrlEvent.value < 0.5f) ? pData->param.ranges[k].min : pData->param.ranges[k].max; } else { if (pData->param.data[k].hints & PARAMETER_IS_LOGARITHMIC) value = pData->param.ranges[k].getUnnormalizedLogValue(ctrlEvent.value); else value = pData->param.ranges[k].getUnnormalizedValue(ctrlEvent.value); if (pData->param.data[k].hints & PARAMETER_IS_INTEGER) value = std::rint(value); } setParameterValue(k, value, false, false, false); pData->postponeRtEvent(kPluginPostRtEventParameterChange, static_cast(k), 0, value); } if ((pData->options & PLUGIN_OPTION_SEND_CONTROL_CHANGES) != 0 && ctrlEvent.param < MAX_MIDI_CONTROL) { fluid_synth_cc(fSynth, event.channel, ctrlEvent.param, int(ctrlEvent.value*127.0f)); } break; } case kEngineControlEventTypeMidiBank: if (event.channel < MAX_MIDI_CHANNELS && (pData->options & PLUGIN_OPTION_MAP_PROGRAM_CHANGES) != 0) nextBankIds[event.channel] = ctrlEvent.param; break; case kEngineControlEventTypeMidiProgram: if (event.channel < MAX_MIDI_CHANNELS && (pData->options & PLUGIN_OPTION_MAP_PROGRAM_CHANGES) != 0) { const uint32_t bankId(nextBankIds[event.channel]); const uint32_t progId(ctrlEvent.param); // TODO int32_t midiprog.find(bank, prog) for (uint32_t k=0; k < pData->midiprog.count; ++k) { if (pData->midiprog.data[k].bank == bankId && pData->midiprog.data[k].program == progId) { fluid_synth_program_select(fSynth, event.channel, fSynthId, bankId, progId); fCurMidiProgs[event.channel] = static_cast(k); if (event.channel == pData->ctrlChannel) pData->postponeRtEvent(kPluginPostRtEventMidiProgramChange, static_cast(k), 0, 0.0f); break; } } } break; case kEngineControlEventTypeAllSoundOff: if (pData->options & PLUGIN_OPTION_SEND_ALL_SOUND_OFF) { #ifdef FLUIDSYNTH_VERSION_NEW_API fluid_synth_all_sounds_off(fSynth, event.channel); #else fluid_synth_cc(fSynth, event.channel, MIDI_CONTROL_ALL_SOUND_OFF, 0); #endif } break; case kEngineControlEventTypeAllNotesOff: if (pData->options & PLUGIN_OPTION_SEND_ALL_SOUND_OFF) { #ifndef BUILD_BRIDGE if (event.channel == pData->ctrlChannel && ! allNotesOffSent) { allNotesOffSent = true; sendMidiAllNotesOffToCallback(); } #endif #ifdef FLUIDSYNTH_VERSION_NEW_API fluid_synth_all_notes_off(fSynth, event.channel); #else fluid_synth_cc(fSynth, event.channel, MIDI_CONTROL_ALL_NOTES_OFF, 0); #endif } break; } break; } case kEngineEventTypeMidi: { const EngineMidiEvent& midiEvent(event.midi); if (midiEvent.size > EngineMidiEvent::kDataSize) continue; uint8_t status = uint8_t(MIDI_GET_STATUS_FROM_DATA(midiEvent.data)); // Fix bad note-off if (status == MIDI_STATUS_NOTE_ON && midiEvent.data[2] == 0) status = MIDI_STATUS_NOTE_OFF; switch (status) { case MIDI_STATUS_NOTE_OFF: { const uint8_t note = midiEvent.data[1]; fluid_synth_noteoff(fSynth, event.channel, note); pData->postponeRtEvent(kPluginPostRtEventNoteOff, event.channel, note, 0.0f); break; } case MIDI_STATUS_NOTE_ON: { const uint8_t note = midiEvent.data[1]; const uint8_t velo = midiEvent.data[2]; fluid_synth_noteon(fSynth, event.channel, note, velo); pData->postponeRtEvent(kPluginPostRtEventNoteOn, event.channel, note, velo); break; } case MIDI_STATUS_POLYPHONIC_AFTERTOUCH: if (pData->options & PLUGIN_OPTION_SEND_NOTE_AFTERTOUCH) { //const uint8_t note = midiEvent.data[1]; //const uint8_t pressure = midiEvent.data[2]; // not in fluidsynth API } break; case MIDI_STATUS_CONTROL_CHANGE: if (pData->options & PLUGIN_OPTION_SEND_CONTROL_CHANGES) { const uint8_t control = midiEvent.data[1]; const uint8_t value = midiEvent.data[2]; fluid_synth_cc(fSynth, event.channel, control, value); } break; case MIDI_STATUS_CHANNEL_PRESSURE: if (pData->options & PLUGIN_OPTION_SEND_CHANNEL_PRESSURE) { const uint8_t pressure = midiEvent.data[1]; fluid_synth_channel_pressure(fSynth, event.channel, pressure);; } break; case MIDI_STATUS_PITCH_WHEEL_CONTROL: if (pData->options & PLUGIN_OPTION_SEND_PITCHBEND) { const uint8_t lsb = midiEvent.data[1]; const uint8_t msb = midiEvent.data[2]; const int value = ((msb << 7) | lsb); fluid_synth_pitch_bend(fSynth, event.channel, value); } break; default: continue; break; } // switch (status) } break; } // switch (event.type) } pData->postRtEvents.trySplice(); if (frames > timeOffset) processSingle(audioOut, frames - timeOffset, timeOffset); } // End of Event Input and Processing #ifndef BUILD_BRIDGE // -------------------------------------------------------------------------------------------------------- // Control Output { uint32_t k = FluidSynthVoiceCount; fParamBuffers[k] = float(fluid_synth_get_active_voice_count(fSynth)); pData->param.ranges[k].fixValue(fParamBuffers[k]); if (pData->param.data[k].midiCC > 0) { float value(pData->param.ranges[k].getNormalizedValue(fParamBuffers[k])); pData->event.portOut->writeControlEvent(0, pData->param.data[k].midiChannel, kEngineControlEventTypeParameter, static_cast(pData->param.data[k].midiCC), value); } } // End of Control Output #endif } bool processSingle(float** const outBuffer, const uint32_t frames, const uint32_t timeOffset) { CARLA_SAFE_ASSERT_RETURN(outBuffer != nullptr, false); CARLA_SAFE_ASSERT_RETURN(frames > 0, false); // -------------------------------------------------------------------------------------------------------- // Try lock, silence otherwise if (pData->engine->isOffline()) { pData->singleMutex.lock(); } else if (! pData->singleMutex.tryLock()) { for (uint32_t i=0; i < pData->audioOut.count; ++i) { for (uint32_t k=0; k < frames; ++k) outBuffer[i][k+timeOffset] = 0.0f; } return false; } // -------------------------------------------------------------------------------------------------------- // Fill plugin buffers and Run plugin if (kUse16Outs) { for (uint32_t i=0; i < pData->audioOut.count; ++i) FloatVectorOperations::clear(fAudio16Buffers[i], static_cast(frames)); // FIXME use '32' or '16' instead of outs fluid_synth_process(fSynth, static_cast(frames), 0, nullptr, static_cast(pData->audioOut.count), fAudio16Buffers); } else fluid_synth_write_float(fSynth, static_cast(frames), outBuffer[0] + timeOffset, 0, 1, outBuffer[1] + timeOffset, 0, 1); #ifndef BUILD_BRIDGE // -------------------------------------------------------------------------------------------------------- // Post-processing (volume and balance) { // note - balance not possible with kUse16Outs, so we can safely skip fAudioOutBuffers const bool doVolume = (pData->hints & PLUGIN_CAN_VOLUME) != 0 && carla_isNotEqual(pData->postProc.volume, 1.0f); const bool doBalance = (pData->hints & PLUGIN_CAN_BALANCE) != 0 && ! (carla_isEqual(pData->postProc.balanceLeft, -1.0f) && carla_isEqual(pData->postProc.balanceRight, 1.0f)); float oldBufLeft[doBalance ? frames : 1]; for (uint32_t i=0; i < pData->audioOut.count; ++i) { // Balance if (doBalance) { if (i % 2 == 0) FloatVectorOperations::copy(oldBufLeft, outBuffer[i]+timeOffset, static_cast(frames)); float balRangeL = (pData->postProc.balanceLeft + 1.0f)/2.0f; float balRangeR = (pData->postProc.balanceRight + 1.0f)/2.0f; for (uint32_t k=0; k < frames; ++k) { if (i % 2 == 0) { // left outBuffer[i][k+timeOffset] = oldBufLeft[k] * (1.0f - balRangeL); outBuffer[i][k+timeOffset] += outBuffer[i+1][k+timeOffset] * (1.0f - balRangeR); } else { // right outBuffer[i][k+timeOffset] = outBuffer[i][k+timeOffset] * balRangeR; outBuffer[i][k+timeOffset] += oldBufLeft[k] * balRangeL; } } } // Volume if (kUse16Outs) { for (uint32_t k=0; k < frames; ++k) outBuffer[i][k+timeOffset] = fAudio16Buffers[i][k] * pData->postProc.volume; } else if (doVolume) { for (uint32_t k=0; k < frames; ++k) outBuffer[i][k+timeOffset] *= pData->postProc.volume; } } } // End of Post-processing #else if (kUse16Outs) { for (uint32_t i=0; i < pData->audioOut.count; ++i) { for (uint32_t k=0; k < frames; ++k) outBuffer[i][k+timeOffset] = fAudio16Buffers[i][k]; } } #endif // -------------------------------------------------------------------------------------------------------- pData->singleMutex.unlock(); return true; } void bufferSizeChanged(const uint32_t newBufferSize) override { if (! kUse16Outs) return; for (uint32_t i=0; i < pData->audioOut.count; ++i) { if (fAudio16Buffers[i] != nullptr) delete[] fAudio16Buffers[i]; fAudio16Buffers[i] = new float[newBufferSize]; } } void sampleRateChanged(const double newSampleRate) override { CARLA_SAFE_ASSERT_RETURN(fSettings != nullptr,); fluid_settings_setnum(fSettings, "synth.sample-rate", newSampleRate); #ifdef FLUIDSYNTH_VERSION_NEW_API CARLA_SAFE_ASSERT_RETURN(fSynth != nullptr,); fluid_synth_set_sample_rate(fSynth, float(newSampleRate)); #endif } // ------------------------------------------------------------------- // Plugin buffers void clearBuffers() noexcept override { carla_debug("CarlaPluginFluidSynth::clearBuffers() - start"); if (fAudio16Buffers != nullptr) { for (uint32_t i=0; i < pData->audioOut.count; ++i) { if (fAudio16Buffers[i] != nullptr) { delete[] fAudio16Buffers[i]; fAudio16Buffers[i] = nullptr; } } delete[] fAudio16Buffers; fAudio16Buffers = nullptr; } CarlaPlugin::clearBuffers(); carla_debug("CarlaPluginFluidSynth::clearBuffers() - end"); } // ------------------------------------------------------------------- const void* getExtraStuff() const noexcept override { static const char xtrue[] = "true"; static const char xfalse[] = "false"; return kUse16Outs ? xtrue : xfalse; } // ------------------------------------------------------------------- bool init(const char* const filename, const char* const name, const char* const label, const uint options) { CARLA_SAFE_ASSERT_RETURN(pData->engine != nullptr, false); // --------------------------------------------------------------- // first checks if (pData->client != nullptr) { pData->engine->setLastError("Plugin client is already registered"); return false; } if (fSynth == nullptr) { pData->engine->setLastError("null synth"); return false; } if (filename == nullptr || filename[0] == '\0') { pData->engine->setLastError("null filename"); return false; } if (label == nullptr || label[0] == '\0') { pData->engine->setLastError("null label"); return false; } // --------------------------------------------------------------- // open soundfont const int synthId(fluid_synth_sfload(fSynth, filename, 0)); if (synthId < 0) { pData->engine->setLastError("Failed to load SoundFont file"); return false; } fSynthId = static_cast(synthId); // --------------------------------------------------------------- // get info CarlaString label2(label); if (kUse16Outs && ! label2.endsWith(" (16 outs)")) label2 += " (16 outs)"; fLabel = label2.dup(); pData->filename = carla_strdup(filename); if (name != nullptr && name[0] != '\0') pData->name = pData->engine->getUniquePluginName(name); else pData->name = pData->engine->getUniquePluginName(label); // --------------------------------------------------------------- // register client pData->client = pData->engine->addClient(this); if (pData->client == nullptr || ! pData->client->isOk()) { pData->engine->setLastError("Failed to register plugin client"); return false; } // --------------------------------------------------------------- // set default options pData->options = 0x0; pData->options |= PLUGIN_OPTION_MAP_PROGRAM_CHANGES; pData->options |= PLUGIN_OPTION_SEND_CHANNEL_PRESSURE; pData->options |= PLUGIN_OPTION_SEND_PITCHBEND; pData->options |= PLUGIN_OPTION_SEND_ALL_SOUND_OFF; if (options & PLUGIN_OPTION_SEND_CONTROL_CHANGES) pData->options |= PLUGIN_OPTION_SEND_CONTROL_CHANGES; return true; } private: enum FluidSynthParameters { FluidSynthReverbOnOff = 0, FluidSynthReverbRoomSize = 1, FluidSynthReverbDamp = 2, FluidSynthReverbLevel = 3, FluidSynthReverbWidth = 4, FluidSynthChorusOnOff = 5, FluidSynthChorusNr = 6, FluidSynthChorusLevel = 7, FluidSynthChorusSpeedHz = 8, FluidSynthChorusDepthMs = 9, FluidSynthChorusType = 10, FluidSynthPolyphony = 11, FluidSynthInterpolation = 12, FluidSynthVoiceCount = 13, FluidSynthParametersMax = 14 }; const bool kUse16Outs; fluid_settings_t* fSettings; fluid_synth_t* fSynth; uint fSynthId; float** fAudio16Buffers; float fParamBuffers[FluidSynthParametersMax]; int32_t fCurMidiProgs[MAX_MIDI_CHANNELS]; const char* fLabel; CARLA_DECLARE_NON_COPYABLE_WITH_LEAK_DETECTOR(CarlaPluginFluidSynth) }; CARLA_BACKEND_END_NAMESPACE #endif // HAVE_FLUIDSYNTH CARLA_BACKEND_START_NAMESPACE // ------------------------------------------------------------------------------------------------------------------- CarlaPlugin* CarlaPlugin::newFluidSynth(const Initializer& init, const bool use16Outs) { carla_debug("CarlaPlugin::newFluidSynth({%p, \"%s\", \"%s\", \"%s\", " P_INT64 "}, %s)", init.engine, init.filename, init.name, init.label, init.uniqueId, bool2str(use16Outs)); #ifdef HAVE_FLUIDSYNTH if (init.engine->getProccessMode() == ENGINE_PROCESS_MODE_CONTINUOUS_RACK && use16Outs) { init.engine->setLastError("Carla's rack mode can only work with Stereo modules," "please choose the 2-channel only SoundFont version"); return nullptr; } if (! fluid_is_soundfont(init.filename)) { init.engine->setLastError("Requested file is not a valid SoundFont"); return nullptr; } CarlaPluginFluidSynth* const plugin(new CarlaPluginFluidSynth(init.engine, init.id, use16Outs)); if (! plugin->init(init.filename, init.name, init.label, init.options)) { delete plugin; return nullptr; } return plugin; #else init.engine->setLastError("fluidsynth support not available"); return nullptr; // unused (void)use16Outs; #endif } CarlaPlugin* CarlaPlugin::newFileSF2(const Initializer& init, const bool use16Outs) { carla_debug("CarlaPlugin::newFileSF2({%p, \"%s\", \"%s\", \"%s\"}, %s)", init.engine, init.filename, init.name, init.label, bool2str(use16Outs)); #ifdef HAVE_FLUIDSYNTH return newFluidSynth(init, use16Outs); #else init.engine->setLastError("SF2 support not available"); return nullptr; // unused (void)use16Outs; #endif } // ------------------------------------------------------------------------------------------------------------------- CARLA_BACKEND_END_NAMESPACE