/* ============================================================================== This file is part of the JUCE library. Copyright (c) 2022 - Raw Material Software Limited JUCE is an open source library subject to commercial or open-source licensing. The code included in this file is provided under the terms of the ISC license http://www.isc.org/downloads/software-support-policy/isc-license. Permission To use, copy, modify, and/or distribute this software for any purpose with or without fee is hereby granted provided that the above copyright notice and this permission notice appear in all copies. JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE DISCLAIMED. ============================================================================== */ namespace juce { /** An interpolator base class for resampling streams of floats. Note that the resamplers are stateful, so when there's a break in the continuity of the input stream you're feeding it, you should call reset() before feeding it any new data. And like with any other stateful filter, if you're resampling multiple channels, make sure each one uses its own interpolator object. @see LagrangeInterpolator, CatmullRomInterpolator, WindowedSincInterpolator, LinearInterpolator, ZeroOrderHoldInterpolator @tags{Audio} */ template class JUCE_API GenericInterpolator { public: GenericInterpolator() noexcept { reset(); } GenericInterpolator (GenericInterpolator&&) noexcept = default; GenericInterpolator& operator= (GenericInterpolator&&) noexcept = default; /** Returns the latency of the interpolation algorithm in isolation. In the context of resampling the total latency of a process using the interpolator is the base latency divided by the speed ratio. */ static constexpr float getBaseLatency() noexcept { return InterpolatorTraits::algorithmicLatency; } /** Resets the state of the interpolator. Call this when there's a break in the continuity of the input data stream. */ void reset() noexcept { indexBuffer = 0; subSamplePos = 1.0; std::fill (std::begin (lastInputSamples), std::end (lastInputSamples), 0.0f); } /** Resamples a stream of samples. @param speedRatio the number of input samples to use for each output sample @param inputSamples the source data to read from. This must contain at least (speedRatio * numOutputSamplesToProduce) samples. @param outputSamples the buffer to write the results into @param numOutputSamplesToProduce the number of output samples that should be created @returns the actual number of input samples that were used */ int process (double speedRatio, const float* inputSamples, float* outputSamples, int numOutputSamplesToProduce) noexcept { return interpolate (speedRatio, inputSamples, outputSamples, numOutputSamplesToProduce); } /** Resamples a stream of samples. @param speedRatio the number of input samples to use for each output sample @param inputSamples the source data to read from. This must contain at least (speedRatio * numOutputSamplesToProduce) samples. @param outputSamples the buffer to write the results into @param numOutputSamplesToProduce the number of output samples that should be created @param numInputSamplesAvailable the number of available input samples. If it needs more samples than available, it either wraps back for wrapAround samples, or it feeds zeroes @param wrapAround if the stream exceeds available samples, it wraps back for wrapAround samples. If wrapAround is set to 0, it will feed zeroes. @returns the actual number of input samples that were used */ int process (double speedRatio, const float* inputSamples, float* outputSamples, int numOutputSamplesToProduce, int numInputSamplesAvailable, int wrapAround) noexcept { return interpolate (speedRatio, inputSamples, outputSamples, numOutputSamplesToProduce, numInputSamplesAvailable, wrapAround); } /** Resamples a stream of samples, adding the results to the output data with a gain. @param speedRatio the number of input samples to use for each output sample @param inputSamples the source data to read from. This must contain at least (speedRatio * numOutputSamplesToProduce) samples. @param outputSamples the buffer to write the results to - the result values will be added to any pre-existing data in this buffer after being multiplied by the gain factor @param numOutputSamplesToProduce the number of output samples that should be created @param gain a gain factor to multiply the resulting samples by before adding them to the destination buffer @returns the actual number of input samples that were used */ int processAdding (double speedRatio, const float* inputSamples, float* outputSamples, int numOutputSamplesToProduce, float gain) noexcept { return interpolateAdding (speedRatio, inputSamples, outputSamples, numOutputSamplesToProduce, gain); } /** Resamples a stream of samples, adding the results to the output data with a gain. @param speedRatio the number of input samples to use for each output sample @param inputSamples the source data to read from. This must contain at least (speedRatio * numOutputSamplesToProduce) samples. @param outputSamples the buffer to write the results to - the result values will be added to any pre-existing data in this buffer after being multiplied by the gain factor @param numOutputSamplesToProduce the number of output samples that should be created @param numInputSamplesAvailable the number of available input samples. If it needs more samples than available, it either wraps back for wrapAround samples, or it feeds zeroes @param wrapAround if the stream exceeds available samples, it wraps back for wrapAround samples. If wrapAround is set to 0, it will feed zeroes. @param gain a gain factor to multiply the resulting samples by before adding them to the destination buffer @returns the actual number of input samples that were used */ int processAdding (double speedRatio, const float* inputSamples, float* outputSamples, int numOutputSamplesToProduce, int numInputSamplesAvailable, int wrapAround, float gain) noexcept { return interpolateAdding (speedRatio, inputSamples, outputSamples, numOutputSamplesToProduce, numInputSamplesAvailable, wrapAround, gain); } private: //============================================================================== forcedinline void pushInterpolationSample (float newValue) noexcept { lastInputSamples[indexBuffer] = newValue; if (++indexBuffer == memorySize) indexBuffer = 0; } forcedinline void pushInterpolationSamples (const float* input, int numOutputSamplesToProduce) noexcept { if (numOutputSamplesToProduce >= memorySize) { const auto* const offsetInput = input + (numOutputSamplesToProduce - memorySize); for (int i = 0; i < memorySize; ++i) pushInterpolationSample (offsetInput[i]); } else { for (int i = 0; i < numOutputSamplesToProduce; ++i) pushInterpolationSample (input[i]); } } forcedinline void pushInterpolationSamples (const float* input, int numOutputSamplesToProduce, int numInputSamplesAvailable, int wrapAround) noexcept { if (numOutputSamplesToProduce >= memorySize) { if (numInputSamplesAvailable >= memorySize) { pushInterpolationSamples (input, numOutputSamplesToProduce); } else { pushInterpolationSamples (input + ((numOutputSamplesToProduce - numInputSamplesAvailable) - 1), numInputSamplesAvailable); if (wrapAround > 0) { numOutputSamplesToProduce -= wrapAround; pushInterpolationSamples (input + ((numOutputSamplesToProduce - (memorySize - numInputSamplesAvailable)) - 1), memorySize - numInputSamplesAvailable); } else { for (int i = numInputSamplesAvailable; i < memorySize; ++i) pushInterpolationSample (0.0f); } } } else { if (numOutputSamplesToProduce > numInputSamplesAvailable) { for (int i = 0; i < numInputSamplesAvailable; ++i) pushInterpolationSample (input[i]); const auto extraSamples = numOutputSamplesToProduce - numInputSamplesAvailable; if (wrapAround > 0) { const auto* const offsetInput = input + (numInputSamplesAvailable - wrapAround); for (int i = 0; i < extraSamples; ++i) pushInterpolationSample (offsetInput[i]); } else { for (int i = 0; i < extraSamples; ++i) pushInterpolationSample (0.0f); } } else { for (int i = 0; i < numOutputSamplesToProduce; ++i) pushInterpolationSample (input[i]); } } } //============================================================================== int interpolate (double speedRatio, const float* input, float* output, int numOutputSamplesToProduce) noexcept { auto pos = subSamplePos; int numUsed = 0; while (numOutputSamplesToProduce > 0) { while (pos >= 1.0) { pushInterpolationSample (input[numUsed++]); pos -= 1.0; } *output++ = InterpolatorTraits::valueAtOffset (lastInputSamples, (float) pos, indexBuffer); pos += speedRatio; --numOutputSamplesToProduce; } subSamplePos = pos; return numUsed; } int interpolate (double speedRatio, const float* input, float* output, int numOutputSamplesToProduce, int numInputSamplesAvailable, int wrap) noexcept { auto originalIn = input; auto pos = subSamplePos; bool exceeded = false; if (speedRatio < 1.0) { for (int i = numOutputSamplesToProduce; --i >= 0;) { if (pos >= 1.0) { if (exceeded) { pushInterpolationSample (0.0f); } else { pushInterpolationSample (*input++); if (--numInputSamplesAvailable <= 0) { if (wrap > 0) { input -= wrap; numInputSamplesAvailable += wrap; } else { exceeded = true; } } } pos -= 1.0; } *output++ = InterpolatorTraits::valueAtOffset (lastInputSamples, (float) pos, indexBuffer); pos += speedRatio; } } else { for (int i = numOutputSamplesToProduce; --i >= 0;) { while (pos < speedRatio) { if (exceeded) { pushInterpolationSample (0); } else { pushInterpolationSample (*input++); if (--numInputSamplesAvailable <= 0) { if (wrap > 0) { input -= wrap; numInputSamplesAvailable += wrap; } else { exceeded = true; } } } pos += 1.0; } pos -= speedRatio; *output++ = InterpolatorTraits::valueAtOffset (lastInputSamples, jmax (0.0f, 1.0f - (float) pos), indexBuffer); } } subSamplePos = pos; if (wrap == 0) return (int) (input - originalIn); return ((int) (input - originalIn) + wrap) % wrap; } int interpolateAdding (double speedRatio, const float* input, float* output, int numOutputSamplesToProduce, int numInputSamplesAvailable, int wrap, float gain) noexcept { auto originalIn = input; auto pos = subSamplePos; bool exceeded = false; if (speedRatio < 1.0) { for (int i = numOutputSamplesToProduce; --i >= 0;) { if (pos >= 1.0) { if (exceeded) { pushInterpolationSample (0.0); } else { pushInterpolationSample (*input++); if (--numInputSamplesAvailable <= 0) { if (wrap > 0) { input -= wrap; numInputSamplesAvailable += wrap; } else { numInputSamplesAvailable = true; } } } pos -= 1.0; } *output++ += gain * InterpolatorTraits::valueAtOffset (lastInputSamples, (float) pos, indexBuffer); pos += speedRatio; } } else { for (int i = numOutputSamplesToProduce; --i >= 0;) { while (pos < speedRatio) { if (exceeded) { pushInterpolationSample (0.0); } else { pushInterpolationSample (*input++); if (--numInputSamplesAvailable <= 0) { if (wrap > 0) { input -= wrap; numInputSamplesAvailable += wrap; } else { exceeded = true; } } } pos += 1.0; } pos -= speedRatio; *output++ += gain * InterpolatorTraits::valueAtOffset (lastInputSamples, jmax (0.0f, 1.0f - (float) pos), indexBuffer); } } subSamplePos = pos; if (wrap == 0) return (int) (input - originalIn); return ((int) (input - originalIn) + wrap) % wrap; } int interpolateAdding (double speedRatio, const float* input, float* output, int numOutputSamplesToProduce, float gain) noexcept { auto pos = subSamplePos; int numUsed = 0; while (numOutputSamplesToProduce > 0) { while (pos >= 1.0) { pushInterpolationSample (input[numUsed++]); pos -= 1.0; } *output++ += gain * InterpolatorTraits::valueAtOffset (lastInputSamples, (float) pos, indexBuffer); pos += speedRatio; --numOutputSamplesToProduce; } subSamplePos = pos; return numUsed; } //============================================================================== float lastInputSamples[(size_t) memorySize]; double subSamplePos = 1.0; int indexBuffer = 0; JUCE_DECLARE_NON_COPYABLE_WITH_LEAK_DETECTOR (GenericInterpolator) }; } // namespace juce