/* ============================================================================== This file is part of the JUCE library. Copyright (c) 2022 - Raw Material Software Limited JUCE is an open source library subject to commercial or open-source licensing. By using JUCE, you agree to the terms of both the JUCE 7 End-User License Agreement and JUCE Privacy Policy. End User License Agreement: www.juce.com/juce-7-licence Privacy Policy: www.juce.com/juce-privacy-policy Or: You may also use this code under the terms of the GPL v3 (see www.gnu.org/licenses). JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE DISCLAIMED. ============================================================================== */ namespace juce { namespace dsp { //============================================================================== /** A collection of structs to pass as the template argument when setting the interpolation type for the DelayLine class. */ namespace DelayLineInterpolationTypes { /** No interpolation between successive samples in the delay line will be performed. This is useful when the delay is a constant integer or to create lo-fi audio effects. @tags{DSP} */ struct None {}; /** Successive samples in the delay line will be linearly interpolated. This type of interpolation has a low computational cost where the delay can be modulated in real time, but it also introduces a low-pass filtering effect into your audio signal. @tags{DSP} */ struct Linear {}; /** Successive samples in the delay line will be interpolated using a 3rd order Lagrange interpolator. This method incurs more computational overhead than linear interpolation but reduces the low-pass filtering effect whilst remaining amenable to real time delay modulation. @tags{DSP} */ struct Lagrange3rd {}; /** Successive samples in the delay line will be interpolated using 1st order Thiran interpolation. This method is very efficient, and features a flat amplitude frequency response in exchange for less accuracy in the phase response. This interpolation method is stateful so is unsuitable for applications requiring fast delay modulation. @tags{DSP} */ struct Thiran {}; } //============================================================================== /** A delay line processor featuring several algorithms for the fractional delay calculation, block processing, and sample-by-sample processing useful when modulating the delay in real time or creating a standard delay effect with feedback. Note: If you intend to change the delay in real time, you may want to smooth changes to the delay systematically using either a ramp or a low-pass filter. @see SmoothedValue, FirstOrderTPTFilter @tags{DSP} */ template class DelayLine { public: //============================================================================== /** Default constructor. */ DelayLine(); /** Constructor. */ explicit DelayLine (int maximumDelayInSamples); //============================================================================== /** Sets the delay in samples. */ void setDelay (SampleType newDelayInSamples); /** Returns the current delay in samples. */ SampleType getDelay() const; //============================================================================== /** Initialises the processor. */ void prepare (const ProcessSpec& spec); /** Sets a new maximum delay in samples. Also clears the delay line. This may allocate internally, so you should never call it from the audio thread. */ void setMaximumDelayInSamples (int maxDelayInSamples); /** Gets the maximum possible delay in samples. For very short delay times, the result of getMaximumDelayInSamples() may differ from the last value passed to setMaximumDelayInSamples(). */ int getMaximumDelayInSamples() const noexcept { return totalSize - 1; } /** Resets the internal state variables of the processor. */ void reset(); //============================================================================== /** Pushes a single sample into one channel of the delay line. Use this function and popSample instead of process if you need to modulate the delay in real time instead of using a fixed delay value, or if you want to code a delay effect with a feedback loop. @see setDelay, popSample, process */ void pushSample (int channel, SampleType sample); /** Pops a single sample from one channel of the delay line. Use this function to modulate the delay in real time or implement standard delay effects with feedback. @param channel the target channel for the delay line. @param delayInSamples sets the wanted fractional delay in samples, or -1 to use the value being used before or set with setDelay function. @param updateReadPointer should be set to true if you use the function once for each sample, or false if you need multi-tap delay capabilities. @see setDelay, pushSample, process */ SampleType popSample (int channel, SampleType delayInSamples = -1, bool updateReadPointer = true); //============================================================================== /** Processes the input and output samples supplied in the processing context. Can be used for block processing when the delay is not going to change during processing. The delay must first be set by calling setDelay. @see setDelay */ template void process (const ProcessContext& context) noexcept { const auto& inputBlock = context.getInputBlock(); auto& outputBlock = context.getOutputBlock(); const auto numChannels = outputBlock.getNumChannels(); const auto numSamples = outputBlock.getNumSamples(); jassert (inputBlock.getNumChannels() == numChannels); jassert (inputBlock.getNumChannels() == writePos.size()); jassert (inputBlock.getNumSamples() == numSamples); if (context.isBypassed) { outputBlock.copyFrom (inputBlock); return; } for (size_t channel = 0; channel < numChannels; ++channel) { auto* inputSamples = inputBlock.getChannelPointer (channel); auto* outputSamples = outputBlock.getChannelPointer (channel); for (size_t i = 0; i < numSamples; ++i) { pushSample ((int) channel, inputSamples[i]); outputSamples[i] = popSample ((int) channel); } } } private: //============================================================================== template typename std::enable_if ::value, SampleType>::type interpolateSample (int channel) const { auto index = (readPos[(size_t) channel] + delayInt) % totalSize; return bufferData.getSample (channel, index); } template typename std::enable_if ::value, SampleType>::type interpolateSample (int channel) const { auto index1 = readPos[(size_t) channel] + delayInt; auto index2 = index1 + 1; if (index2 >= totalSize) { index1 %= totalSize; index2 %= totalSize; } auto value1 = bufferData.getSample (channel, index1); auto value2 = bufferData.getSample (channel, index2); return value1 + delayFrac * (value2 - value1); } template typename std::enable_if ::value, SampleType>::type interpolateSample (int channel) const { auto index1 = readPos[(size_t) channel] + delayInt; auto index2 = index1 + 1; auto index3 = index2 + 1; auto index4 = index3 + 1; if (index4 >= totalSize) { index1 %= totalSize; index2 %= totalSize; index3 %= totalSize; index4 %= totalSize; } auto* samples = bufferData.getReadPointer (channel); auto value1 = samples[index1]; auto value2 = samples[index2]; auto value3 = samples[index3]; auto value4 = samples[index4]; auto d1 = delayFrac - 1.f; auto d2 = delayFrac - 2.f; auto d3 = delayFrac - 3.f; auto c1 = -d1 * d2 * d3 / 6.f; auto c2 = d2 * d3 * 0.5f; auto c3 = -d1 * d3 * 0.5f; auto c4 = d1 * d2 / 6.f; return value1 * c1 + delayFrac * (value2 * c2 + value3 * c3 + value4 * c4); } template typename std::enable_if ::value, SampleType>::type interpolateSample (int channel) { auto index1 = readPos[(size_t) channel] + delayInt; auto index2 = index1 + 1; if (index2 >= totalSize) { index1 %= totalSize; index2 %= totalSize; } auto value1 = bufferData.getSample (channel, index1); auto value2 = bufferData.getSample (channel, index2); auto output = delayFrac == 0 ? value1 : value2 + alpha * (value1 - v[(size_t) channel]); v[(size_t) channel] = output; return output; } //============================================================================== template typename std::enable_if ::value, void>::type updateInternalVariables() { } template typename std::enable_if ::value, void>::type updateInternalVariables() { } template typename std::enable_if ::value, void>::type updateInternalVariables() { if (delayInt >= 1) { delayFrac++; delayInt--; } } template typename std::enable_if ::value, void>::type updateInternalVariables() { if (delayFrac < (SampleType) 0.618 && delayInt >= 1) { delayFrac++; delayInt--; } alpha = (1 - delayFrac) / (1 + delayFrac); } //============================================================================== double sampleRate; //============================================================================== AudioBuffer bufferData; std::vector v; std::vector writePos, readPos; SampleType delay = 0.0, delayFrac = 0.0; int delayInt = 0, totalSize = 4; SampleType alpha = 0.0; }; } // namespace dsp } // namespace juce