/* * Carla FluidSynth Plugin * Copyright (C) 2011-2013 Filipe Coelho * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * For a full copy of the GNU General Public License see the GPL.txt file */ #include "CarlaPluginInternal.hpp" #ifdef WANT_FLUIDSYNTH #include #define FLUIDSYNTH_VERSION_NEW_API (FLUIDSYNTH_VERSION_MAJOR >= 1 && FLUIDSYNTH_VERSION_MINOR >= 1 && FLUIDSYNTH_VERSION_MICRO >= 4) CARLA_BACKEND_START_NAMESPACE #if 0 } #endif #define FLUID_DEFAULT_POLYPHONY 64 class FluidSynthPlugin : public CarlaPlugin { public: FluidSynthPlugin(CarlaEngine* const engine, const unsigned int id, const bool use16Outs) : CarlaPlugin(engine, id), kUses16Outs(use16Outs), fSettings(nullptr), fSynth(nullptr), fSynthId(-1), fAudio16Buffers(nullptr), fParamBuffers{0.0f} { carla_debug("FluidSynthPlugin::FluidSynthPlugin(%p, %i, %s)", engine, id, bool2str(use16Outs)); // create settings fSettings = new_fluid_settings(); CARLA_ASSERT(fSettings != nullptr); // define settings fluid_settings_setint(fSettings, "synth.audio-channels", use16Outs ? 16 : 1); fluid_settings_setint(fSettings, "synth.audio-groups", use16Outs ? 16 : 1); fluid_settings_setnum(fSettings, "synth.sample-rate", kData->engine->getSampleRate()); fluid_settings_setint(fSettings, "synth.threadsafe-api ", 0); // create synth fSynth = new_fluid_synth(fSettings); CARLA_ASSERT(fSynth != nullptr); #ifdef FLUIDSYNTH_VERSION_NEW_API fluid_synth_set_sample_rate(fSynth, kData->engine->getSampleRate()); #endif // set default values fluid_synth_set_reverb_on(fSynth, 0); fluid_synth_set_reverb(fSynth, FLUID_REVERB_DEFAULT_ROOMSIZE, FLUID_REVERB_DEFAULT_DAMP, FLUID_REVERB_DEFAULT_WIDTH, FLUID_REVERB_DEFAULT_LEVEL); fluid_synth_set_chorus_on(fSynth, 0); fluid_synth_set_chorus(fSynth, FLUID_CHORUS_DEFAULT_N, FLUID_CHORUS_DEFAULT_LEVEL, FLUID_CHORUS_DEFAULT_SPEED, FLUID_CHORUS_DEFAULT_DEPTH, FLUID_CHORUS_DEFAULT_TYPE); fluid_synth_set_polyphony(fSynth, FLUID_DEFAULT_POLYPHONY); for (int i=0; i < MAX_MIDI_CHANNELS; ++i) fluid_synth_set_interp_method(fSynth, i, FLUID_INTERP_DEFAULT); } ~FluidSynthPlugin() override { carla_debug("FluidSynthPlugin::~FluidSynthPlugin()"); kData->singleMutex.lock(); kData->masterMutex.lock(); if (kData->active) { deactivate(); kData->active = false; } delete_fluid_synth(fSynth); delete_fluid_settings(fSettings); clearBuffers(); } // ------------------------------------------------------------------- // Information (base) PluginType type() const override { return PLUGIN_SF2; } PluginCategory category() override { return PLUGIN_CATEGORY_SYNTH; } // ------------------------------------------------------------------- // Information (count) uint32_t parameterScalePointCount(const uint32_t parameterId) const override { CARLA_ASSERT(parameterId < kData->param.count); switch (parameterId) { case FluidSynthChorusType: return 2; case FluidSynthInterpolation: return 4; default: return 0; } } // ------------------------------------------------------------------- // Information (current data) // nothing // ------------------------------------------------------------------- // Information (per-plugin data) unsigned int availableOptions() override { unsigned int options = 0x0; options |= PLUGIN_OPTION_MAP_PROGRAM_CHANGES; options |= PLUGIN_OPTION_SEND_CONTROL_CHANGES; options |= PLUGIN_OPTION_SEND_CHANNEL_PRESSURE; options |= PLUGIN_OPTION_SEND_PITCHBEND; options |= PLUGIN_OPTION_SEND_ALL_SOUND_OFF; return options; } float getParameterValue(const uint32_t parameterId) override { CARLA_ASSERT(parameterId < kData->param.count); return fParamBuffers[parameterId]; } float getParameterScalePointValue(const uint32_t parameterId, const uint32_t scalePointId) override { CARLA_ASSERT(parameterId < kData->param.count); CARLA_ASSERT(scalePointId < parameterScalePointCount(parameterId)); switch (parameterId) { case FluidSynthChorusType: switch (scalePointId) { case 0: return FLUID_CHORUS_MOD_SINE; case 1: return FLUID_CHORUS_MOD_TRIANGLE; default: return FLUID_CHORUS_DEFAULT_TYPE; } case FluidSynthInterpolation: switch (scalePointId) { case 0: return FLUID_INTERP_NONE; case 1: return FLUID_INTERP_LINEAR; case 2: return FLUID_INTERP_4THORDER; case 3: return FLUID_INTERP_7THORDER; default: return FLUID_INTERP_DEFAULT; } default: return 0.0f; } } void getLabel(char* const strBuf) override { if (fLabel.isNotEmpty()) std::strncpy(strBuf, (const char*)fLabel, STR_MAX); else CarlaPlugin::getLabel(strBuf); } void getMaker(char* const strBuf) override { std::strncpy(strBuf, "FluidSynth SF2 engine", STR_MAX); } void getCopyright(char* const strBuf) override { std::strncpy(strBuf, "GNU GPL v2+", STR_MAX); } void getRealName(char* const strBuf) override { getLabel(strBuf); } void getParameterName(const uint32_t parameterId, char* const strBuf) override { CARLA_ASSERT(parameterId < kData->param.count); switch (parameterId) { case FluidSynthReverbOnOff: std::strncpy(strBuf, "Reverb On/Off", STR_MAX); break; case FluidSynthReverbRoomSize: std::strncpy(strBuf, "Reverb Room Size", STR_MAX); break; case FluidSynthReverbDamp: std::strncpy(strBuf, "Reverb Damp", STR_MAX); break; case FluidSynthReverbLevel: std::strncpy(strBuf, "Reverb Level", STR_MAX); break; case FluidSynthReverbWidth: std::strncpy(strBuf, "Reverb Width", STR_MAX); break; case FluidSynthChorusOnOff: std::strncpy(strBuf, "Chorus On/Off", STR_MAX); break; case FluidSynthChorusNr: std::strncpy(strBuf, "Chorus Voice Count", STR_MAX); break; case FluidSynthChorusLevel: std::strncpy(strBuf, "Chorus Level", STR_MAX); break; case FluidSynthChorusSpeedHz: std::strncpy(strBuf, "Chorus Speed", STR_MAX); break; case FluidSynthChorusDepthMs: std::strncpy(strBuf, "Chorus Depth", STR_MAX); break; case FluidSynthChorusType: std::strncpy(strBuf, "Chorus Type", STR_MAX); break; case FluidSynthPolyphony: std::strncpy(strBuf, "Polyphony", STR_MAX); break; case FluidSynthInterpolation: std::strncpy(strBuf, "Interpolation", STR_MAX); break; case FluidSynthVoiceCount: std::strncpy(strBuf, "Voice Count", STR_MAX); break; default: CarlaPlugin::getParameterName(parameterId, strBuf); break; } } void getParameterUnit(const uint32_t parameterId, char* const strBuf) override { CARLA_ASSERT(parameterId < kData->param.count); switch (parameterId) { case FluidSynthChorusSpeedHz: std::strncpy(strBuf, "Hz", STR_MAX); break; case FluidSynthChorusDepthMs: std::strncpy(strBuf, "ms", STR_MAX); break; default: CarlaPlugin::getParameterUnit(parameterId, strBuf); break; } } void getParameterScalePointLabel(const uint32_t parameterId, const uint32_t scalePointId, char* const strBuf) override { CARLA_ASSERT(parameterId < kData->param.count); CARLA_ASSERT(scalePointId < parameterScalePointCount(parameterId)); switch (parameterId) { case FluidSynthChorusType: switch (scalePointId) { case 0: std::strncpy(strBuf, "Sine wave", STR_MAX); return; case 1: std::strncpy(strBuf, "Triangle wave", STR_MAX); return; } case FluidSynthInterpolation: switch (scalePointId) { case 0: std::strncpy(strBuf, "None", STR_MAX); return; case 1: std::strncpy(strBuf, "Straight-line", STR_MAX); return; case 2: std::strncpy(strBuf, "Fourth-order", STR_MAX); return; case 3: std::strncpy(strBuf, "Seventh-order", STR_MAX); return; } } CarlaPlugin::getParameterScalePointLabel(parameterId, scalePointId, strBuf); } // ------------------------------------------------------------------- // Set data (state) // nothing // ------------------------------------------------------------------- // Set data (internal stuff) // nothing // ------------------------------------------------------------------- // Set data (plugin-specific stuff) void setParameterValue(const uint32_t parameterId, const float value, const bool sendGui, const bool sendOsc, const bool sendCallback) override { CARLA_ASSERT(parameterId < kData->param.count); const float fixedValue(kData->param.fixValue(parameterId, value)); fParamBuffers[parameterId] = fixedValue; { const ScopedSingleProcessLocker spl(this, (sendGui || sendOsc || sendCallback)); switch (parameterId) { case FluidSynthReverbOnOff: fluid_synth_set_reverb_on(fSynth, (fixedValue > 0.5f) ? 1 : 0); break; case FluidSynthReverbRoomSize: case FluidSynthReverbDamp: case FluidSynthReverbLevel: case FluidSynthReverbWidth: fluid_synth_set_reverb(fSynth, fParamBuffers[FluidSynthReverbRoomSize], fParamBuffers[FluidSynthReverbDamp], fParamBuffers[FluidSynthReverbWidth], fParamBuffers[FluidSynthReverbLevel]); break; case FluidSynthChorusOnOff: fluid_synth_set_chorus_on(fSynth, (value > 0.5f) ? 1 : 0); break; case FluidSynthChorusNr: case FluidSynthChorusLevel: case FluidSynthChorusSpeedHz: case FluidSynthChorusDepthMs: case FluidSynthChorusType: fluid_synth_set_chorus(fSynth, fParamBuffers[FluidSynthChorusNr], fParamBuffers[FluidSynthChorusLevel], fParamBuffers[FluidSynthChorusSpeedHz], fParamBuffers[FluidSynthChorusDepthMs], fParamBuffers[FluidSynthChorusType]); break; case FluidSynthPolyphony: fluid_synth_set_polyphony(fSynth, value); break; case FluidSynthInterpolation: for (int i=0; i < MAX_MIDI_CHANNELS; ++i) fluid_synth_set_interp_method(fSynth, i, value); break; default: break; } } CarlaPlugin::setParameterValue(parameterId, value, sendGui, sendOsc, sendCallback); } void setMidiProgram(int32_t index, const bool sendGui, const bool sendOsc, const bool sendCallback) override { CARLA_ASSERT(fSynth != nullptr); CARLA_ASSERT(index >= -1 && index < static_cast(kData->midiprog.count)); if (index < -1) index = -1; else if (index > static_cast(kData->midiprog.count)) return; if (kData->ctrlChannel < 0 || kData->ctrlChannel >= MAX_MIDI_CHANNELS) return; if (index >= 0) { const uint32_t bank = kData->midiprog.data[index].bank; const uint32_t program = kData->midiprog.data[index].program; //const ScopedSingleProcessLocker spl(this, (sendGui || sendOsc || sendCallback)); fluid_synth_program_select(fSynth, kData->ctrlChannel, fSynthId, bank, program); } CarlaPlugin::setMidiProgram(index, sendGui, sendOsc, sendCallback); } // ------------------------------------------------------------------- // Set gui stuff // nothing // ------------------------------------------------------------------- // Plugin state void reload() override { carla_debug("FluidSynthPlugin::reload() - start"); CARLA_ASSERT(kData->engine != nullptr); CARLA_ASSERT(fSynth != nullptr); if (kData->engine == nullptr) return; if (fSynth == nullptr) return; const ProcessMode processMode(kData->engine->getProccessMode()); // Safely disable plugin for reload const ScopedDisabler sd(this); if (kData->active) deactivate(); clearBuffers(); uint32_t aOuts, params, j; aOuts = kUses16Outs ? 32 : 2; params = FluidSynthParametersMax; kData->audioOut.createNew(aOuts); kData->param.createNew(params); const int portNameSize = kData->engine->maxPortNameSize(); CarlaString portName; // --------------------------------------- // Audio Outputs if (kUses16Outs) { for (j=0; j < 32; ++j) { portName.clear(); if (processMode == PROCESS_MODE_SINGLE_CLIENT) { portName = fName; portName += ":"; } portName += "out-"; if ((j+2)/2 < 9) portName += "0"; portName += CarlaString((j+2)/2); if (j % 2 == 0) portName += "L"; else portName += "R"; portName.truncate(portNameSize); kData->audioOut.ports[j].port = (CarlaEngineAudioPort*)kData->client->addPort(kEnginePortTypeAudio, portName, false); kData->audioOut.ports[j].rindex = j; } fAudio16Buffers = new float*[aOuts]; for (j=0; j < aOuts; ++j) fAudio16Buffers[j] = nullptr; } else { // out-left portName.clear(); if (processMode == PROCESS_MODE_SINGLE_CLIENT) { portName = fName; portName += ":"; } portName += "out-left"; portName.truncate(portNameSize); kData->audioOut.ports[0].port = (CarlaEngineAudioPort*)kData->client->addPort(kEnginePortTypeAudio, portName, false); kData->audioOut.ports[0].rindex = 0; // out-right portName.clear(); if (processMode == PROCESS_MODE_SINGLE_CLIENT) { portName = fName; portName += ":"; } portName += "out-right"; portName.truncate(portNameSize); kData->audioOut.ports[1].port = (CarlaEngineAudioPort*)kData->client->addPort(kEnginePortTypeAudio, portName, false); kData->audioOut.ports[1].rindex = 1; } // --------------------------------------- // Event Input { portName.clear(); if (processMode == PROCESS_MODE_SINGLE_CLIENT) { portName = fName; portName += ":"; } portName += "event-in"; portName.truncate(portNameSize); kData->event.portIn = (CarlaEngineEventPort*)kData->client->addPort(kEnginePortTypeEvent, portName, true); } // --------------------------------------- // Event Output { portName.clear(); if (processMode == PROCESS_MODE_SINGLE_CLIENT) { portName = fName; portName += ":"; } portName += "event-out"; portName.truncate(portNameSize); kData->event.portOut = (CarlaEngineEventPort*)kData->client->addPort(kEnginePortTypeEvent, portName, false); } // ---------------------- j = FluidSynthReverbOnOff; kData->param.data[j].index = j; kData->param.data[j].rindex = j; kData->param.data[j].type = PARAMETER_INPUT; kData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_AUTOMABLE | PARAMETER_IS_BOOLEAN; kData->param.data[j].midiChannel = 0; kData->param.data[j].midiCC = -1; kData->param.ranges[j].min = 0.0f; kData->param.ranges[j].max = 1.0f; kData->param.ranges[j].def = 0.0f; // off kData->param.ranges[j].step = 1.0f; kData->param.ranges[j].stepSmall = 1.0f; kData->param.ranges[j].stepLarge = 1.0f; fParamBuffers[j] = kData->param.ranges[j].def; // ---------------------- j = FluidSynthReverbRoomSize; kData->param.data[j].index = j; kData->param.data[j].rindex = j; kData->param.data[j].type = PARAMETER_INPUT; kData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_AUTOMABLE; kData->param.data[j].midiChannel = 0; kData->param.data[j].midiCC = -1; kData->param.ranges[j].min = 0.0f; kData->param.ranges[j].max = 1.2f; kData->param.ranges[j].def = FLUID_REVERB_DEFAULT_ROOMSIZE; kData->param.ranges[j].step = 0.01f; kData->param.ranges[j].stepSmall = 0.0001f; kData->param.ranges[j].stepLarge = 0.1f; fParamBuffers[j] = kData->param.ranges[j].def; // ---------------------- j = FluidSynthReverbDamp; kData->param.data[j].index = j; kData->param.data[j].rindex = j; kData->param.data[j].type = PARAMETER_INPUT; kData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_AUTOMABLE; kData->param.data[j].midiChannel = 0; kData->param.data[j].midiCC = -1; kData->param.ranges[j].min = 0.0f; kData->param.ranges[j].max = 1.0f; kData->param.ranges[j].def = FLUID_REVERB_DEFAULT_DAMP; kData->param.ranges[j].step = 0.01f; kData->param.ranges[j].stepSmall = 0.0001f; kData->param.ranges[j].stepLarge = 0.1f; fParamBuffers[j] = kData->param.ranges[j].def; // ---------------------- j = FluidSynthReverbLevel; kData->param.data[j].index = j; kData->param.data[j].rindex = j; kData->param.data[j].type = PARAMETER_INPUT; kData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_AUTOMABLE; kData->param.data[j].midiChannel = 0; kData->param.data[j].midiCC = MIDI_CONTROL_REVERB_SEND_LEVEL; kData->param.ranges[j].min = 0.0f; kData->param.ranges[j].max = 1.0f; kData->param.ranges[j].def = FLUID_REVERB_DEFAULT_LEVEL; kData->param.ranges[j].step = 0.01f; kData->param.ranges[j].stepSmall = 0.0001f; kData->param.ranges[j].stepLarge = 0.1f; fParamBuffers[j] = kData->param.ranges[j].def; // ---------------------- j = FluidSynthReverbWidth; kData->param.data[j].index = j; kData->param.data[j].rindex = j; kData->param.data[j].type = PARAMETER_INPUT; kData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_AUTOMABLE; kData->param.data[j].midiChannel = 0; kData->param.data[j].midiCC = -1; kData->param.ranges[j].min = 0.0f; kData->param.ranges[j].max = 10.0f; // should be 100, but that sounds too much kData->param.ranges[j].def = FLUID_REVERB_DEFAULT_WIDTH; kData->param.ranges[j].step = 0.01f; kData->param.ranges[j].stepSmall = 0.0001f; kData->param.ranges[j].stepLarge = 0.1f; fParamBuffers[j] = kData->param.ranges[j].def; // ---------------------- j = FluidSynthChorusOnOff; kData->param.data[j].index = j; kData->param.data[j].rindex = j; kData->param.data[j].type = PARAMETER_INPUT; kData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_BOOLEAN; kData->param.data[j].midiChannel = 0; kData->param.data[j].midiCC = -1; kData->param.ranges[j].min = 0.0f; kData->param.ranges[j].max = 1.0f; kData->param.ranges[j].def = 0.0f; // off kData->param.ranges[j].step = 1.0f; kData->param.ranges[j].stepSmall = 1.0f; kData->param.ranges[j].stepLarge = 1.0f; fParamBuffers[j] = kData->param.ranges[j].def; // ---------------------- j = FluidSynthChorusNr; kData->param.data[j].index = j; kData->param.data[j].rindex = j; kData->param.data[j].type = PARAMETER_INPUT; kData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_INTEGER; kData->param.data[j].midiChannel = 0; kData->param.data[j].midiCC = -1; kData->param.ranges[j].min = 0.0f; kData->param.ranges[j].max = 99.0f; kData->param.ranges[j].def = FLUID_CHORUS_DEFAULT_N; kData->param.ranges[j].step = 1.0f; kData->param.ranges[j].stepSmall = 1.0f; kData->param.ranges[j].stepLarge = 10.0f; fParamBuffers[j] = kData->param.ranges[j].def; // ---------------------- j = FluidSynthChorusLevel; kData->param.data[j].index = j; kData->param.data[j].rindex = j; kData->param.data[j].type = PARAMETER_INPUT; kData->param.data[j].hints = PARAMETER_IS_ENABLED; kData->param.data[j].midiChannel = 0; kData->param.data[j].midiCC = 0; //MIDI_CONTROL_CHORUS_SEND_LEVEL; kData->param.ranges[j].min = 0.0f; kData->param.ranges[j].max = 10.0f; kData->param.ranges[j].def = FLUID_CHORUS_DEFAULT_LEVEL; kData->param.ranges[j].step = 0.01f; kData->param.ranges[j].stepSmall = 0.0001f; kData->param.ranges[j].stepLarge = 0.1f; fParamBuffers[j] = kData->param.ranges[j].def; // ---------------------- j = FluidSynthChorusSpeedHz; kData->param.data[j].index = j; kData->param.data[j].rindex = j; kData->param.data[j].type = PARAMETER_INPUT; kData->param.data[j].hints = PARAMETER_IS_ENABLED; kData->param.data[j].midiChannel = 0; kData->param.data[j].midiCC = -1; kData->param.ranges[j].min = 0.29f; kData->param.ranges[j].max = 5.0f; kData->param.ranges[j].def = FLUID_CHORUS_DEFAULT_SPEED; kData->param.ranges[j].step = 0.01f; kData->param.ranges[j].stepSmall = 0.0001f; kData->param.ranges[j].stepLarge = 0.1f; fParamBuffers[j] = kData->param.ranges[j].def; // ---------------------- j = FluidSynthChorusDepthMs; kData->param.data[j].index = j; kData->param.data[j].rindex = j; kData->param.data[j].type = PARAMETER_INPUT; kData->param.data[j].hints = PARAMETER_IS_ENABLED; kData->param.data[j].midiChannel = 0; kData->param.data[j].midiCC = -1; kData->param.ranges[j].min = 0.0f; kData->param.ranges[j].max = 2048000.0 / kData->engine->getSampleRate(); kData->param.ranges[j].def = FLUID_CHORUS_DEFAULT_DEPTH; kData->param.ranges[j].step = 0.01f; kData->param.ranges[j].stepSmall = 0.0001f; kData->param.ranges[j].stepLarge = 0.1f; fParamBuffers[j] = kData->param.ranges[j].def; // ---------------------- j = FluidSynthChorusType; kData->param.data[j].index = j; kData->param.data[j].rindex = j; kData->param.data[j].type = PARAMETER_INPUT; kData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_INTEGER | PARAMETER_USES_SCALEPOINTS; kData->param.data[j].midiChannel = 0; kData->param.data[j].midiCC = -1; kData->param.ranges[j].min = FLUID_CHORUS_MOD_SINE; kData->param.ranges[j].max = FLUID_CHORUS_MOD_TRIANGLE; kData->param.ranges[j].def = FLUID_CHORUS_DEFAULT_TYPE; kData->param.ranges[j].step = 1.0f; kData->param.ranges[j].stepSmall = 1.0f; kData->param.ranges[j].stepLarge = 1.0f; fParamBuffers[j] = kData->param.ranges[j].def; // ---------------------- j = FluidSynthPolyphony; kData->param.data[j].index = j; kData->param.data[j].rindex = j; kData->param.data[j].type = PARAMETER_INPUT; kData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_INTEGER; kData->param.data[j].midiChannel = 0; kData->param.data[j].midiCC = -1; kData->param.ranges[j].min = 1.0f; kData->param.ranges[j].max = 512.0f; // max theoric is 65535 kData->param.ranges[j].def = fluid_synth_get_polyphony(fSynth); kData->param.ranges[j].step = 1.0f; kData->param.ranges[j].stepSmall = 1.0f; kData->param.ranges[j].stepLarge = 10.0f; fParamBuffers[j] = kData->param.ranges[j].def; // ---------------------- j = FluidSynthInterpolation; kData->param.data[j].index = j; kData->param.data[j].rindex = j; kData->param.data[j].type = PARAMETER_INPUT; kData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_INTEGER | PARAMETER_USES_SCALEPOINTS; kData->param.data[j].midiChannel = 0; kData->param.data[j].midiCC = -1; kData->param.ranges[j].min = FLUID_INTERP_NONE; kData->param.ranges[j].max = FLUID_INTERP_HIGHEST; kData->param.ranges[j].def = FLUID_INTERP_DEFAULT; kData->param.ranges[j].step = 1.0f; kData->param.ranges[j].stepSmall = 1.0f; kData->param.ranges[j].stepLarge = 1.0f; fParamBuffers[j] = kData->param.ranges[j].def; // ---------------------- j = FluidSynthVoiceCount; kData->param.data[j].index = j; kData->param.data[j].rindex = j; kData->param.data[j].type = PARAMETER_OUTPUT; kData->param.data[j].hints = PARAMETER_IS_ENABLED | PARAMETER_IS_AUTOMABLE | PARAMETER_IS_INTEGER; kData->param.data[j].midiChannel = 0; kData->param.data[j].midiCC = -1; kData->param.ranges[j].min = 0.0f; kData->param.ranges[j].max = 65535.0f; kData->param.ranges[j].def = 0.0f; kData->param.ranges[j].step = 1.0f; kData->param.ranges[j].stepSmall = 1.0f; kData->param.ranges[j].stepLarge = 1.0f; fParamBuffers[j] = kData->param.ranges[j].def; // --------------------------------------- // plugin hints fHints = 0x0; fHints |= PLUGIN_IS_SYNTH; fHints |= PLUGIN_CAN_VOLUME; fHints |= PLUGIN_CAN_BALANCE; // extra plugin hints kData->extraHints = 0x0; kData->extraHints |= PLUGIN_HINT_HAS_MIDI_IN; kData->extraHints |= PLUGIN_HINT_CAN_RUN_RACK; bufferSizeChanged(kData->engine->getBufferSize()); reloadPrograms(true); if (kData->active) activate(); carla_debug("FluidSynthPlugin::reload() - end"); } void reloadPrograms(const bool init) override { carla_debug("FluidSynthPlugin::reloadPrograms(%s)", bool2str(init)); // Delete old programs kData->midiprog.clear(); // Query new programs uint32_t count = 0; fluid_sfont_t* f_sfont; fluid_preset_t f_preset; bool hasDrums = false; f_sfont = fluid_synth_get_sfont_by_id(fSynth, fSynthId); // initial check to know how much midi-programs we have f_sfont->iteration_start(f_sfont); while (f_sfont->iteration_next(f_sfont, &f_preset)) count += 1; // soundfonts must always have at least 1 midi-program CARLA_ASSERT(count > 0); if (count == 0) return; kData->midiprog.createNew(count); // Update data uint32_t i = 0; f_sfont->iteration_start(f_sfont); while (f_sfont->iteration_next(f_sfont, &f_preset)) { CARLA_ASSERT(i < kData->midiprog.count); kData->midiprog.data[i].bank = f_preset.get_banknum(&f_preset); kData->midiprog.data[i].program = f_preset.get_num(&f_preset); kData->midiprog.data[i].name = carla_strdup(f_preset.get_name(&f_preset)); if (kData->midiprog.data[i].bank == 128) hasDrums = true; ++i; } //f_sfont->free(f_sfont); #ifndef BUILD_BRIDGE // Update OSC Names if (kData->engine->isOscControlRegistered()) { kData->engine->osc_send_control_set_midi_program_count(fId, count); for (i=0; i < count; ++i) kData->engine->osc_send_control_set_midi_program_data(fId, i, kData->midiprog.data[i].bank, kData->midiprog.data[i].program, kData->midiprog.data[i].name); } #endif if (init) { fluid_synth_program_reset(fSynth); // select first program, or 128 for ch10 for (i=0; i < 16 && i != 9; ++i) { fluid_synth_program_select(fSynth, i, fSynthId, kData->midiprog.data[0].bank, kData->midiprog.data[0].program); #ifdef FLUIDSYNTH_VERSION_NEW_API fluid_synth_set_channel_type(fSynth, i, CHANNEL_TYPE_MELODIC); #endif } if (hasDrums) { fluid_synth_program_select(fSynth, 9, fSynthId, 128, 0); #ifdef FLUIDSYNTH_VERSION_NEW_API fluid_synth_set_channel_type(fSynth, 9, CHANNEL_TYPE_DRUM); #endif } else { fluid_synth_program_select(fSynth, 9, fSynthId, kData->midiprog.data[0].bank, kData->midiprog.data[0].program); #ifdef FLUIDSYNTH_VERSION_NEW_API fluid_synth_set_channel_type(fSynth, 9, CHANNEL_TYPE_MELODIC); #endif } setMidiProgram(0, false, false, false); } else { kData->engine->callback(CALLBACK_RELOAD_PROGRAMS, fId, 0, 0, 0.0f, nullptr); } } // ------------------------------------------------------------------- // Plugin processing void process(float** const, float** const outBuffer, const uint32_t frames) override { uint32_t i, k; // -------------------------------------------------------------------------------------------------------- // Check if active if (! kData->active) { // disable any output sound for (i=0; i < kData->audioOut.count; ++i) carla_zeroFloat(outBuffer[i], frames); return; } // -------------------------------------------------------------------------------------------------------- // Check if needs reset if (kData->needsReset) { // TODO if (fOptions & PLUGIN_OPTION_SEND_ALL_SOUND_OFF) { for (int c=0; c < MAX_MIDI_CHANNELS; c++) { #ifdef FLUIDSYNTH_VERSION_NEW_API fluid_synth_all_notes_off(fSynth, c); fluid_synth_all_sounds_off(fSynth, c); #else fluid_synth_cc(f_synth, c, MIDI_CONTROL_ALL_SOUND_OFF, 0); fluid_synth_cc(f_synth, c, MIDI_CONTROL_ALL_NOTES_OFF, 0); #endif } } else { } kData->needsReset = false; } // -------------------------------------------------------------------------------------------------------- // Event Input and Processing { // ---------------------------------------------------------------------------------------------------- // MIDI Input (External) if (kData->extNotes.mutex.tryLock()) { while (! kData->extNotes.data.isEmpty()) { const ExternalMidiNote& note(kData->extNotes.data.getFirst(true)); CARLA_ASSERT(note.channel >= 0 && note.channel < MAX_MIDI_CHANNELS); if (note.velo > 0) fluid_synth_noteon(fSynth, note.channel, note.note, note.velo); else fluid_synth_noteoff(fSynth,note.channel, note.note); } kData->extNotes.mutex.unlock(); } // End of MIDI Input (External) // ---------------------------------------------------------------------------------------------------- // Event Input (System) bool allNotesOffSent = false; uint32_t time, nEvents = kData->event.portIn->getEventCount(); uint32_t timeOffset = 0; uint32_t nextBankIds[16] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 128, 0, 0, 0, 0, 0, 0 }; if (kData->midiprog.current >= 0 && kData->midiprog.count > 0 && kData->ctrlChannel >= 0 && kData->ctrlChannel < 16) nextBankIds[kData->ctrlChannel] = kData->midiprog.data[kData->midiprog.current].bank; for (i=0; i < nEvents; ++i) { const EngineEvent& event(kData->event.portIn->getEvent(i)); time = event.time; if (time >= frames) continue; CARLA_ASSERT_INT2(time >= timeOffset, time, timeOffset); if (time > timeOffset) { if (processSingle(outBuffer, time - timeOffset, timeOffset)) { timeOffset = time; if (kData->midiprog.current >= 0 && kData->midiprog.count > 0 && kData->ctrlChannel >= 0 && kData->ctrlChannel < 16) nextBankIds[kData->ctrlChannel] = kData->midiprog.data[kData->midiprog.current].bank; } } // Control change switch (event.type) { case kEngineEventTypeNull: break; case kEngineEventTypeControl: { const EngineControlEvent& ctrlEvent = event.ctrl; switch (ctrlEvent.type) { case kEngineControlEventTypeNull: break; case kEngineControlEventTypeParameter: { // Control backend stuff if (event.channel == kData->ctrlChannel) { float value; if (MIDI_IS_CONTROL_BREATH_CONTROLLER(ctrlEvent.param) && (fHints & PLUGIN_CAN_DRYWET) > 0) { value = ctrlEvent.value; setDryWet(value, false, false); postponeRtEvent(kPluginPostRtEventParameterChange, PARAMETER_DRYWET, 0, value); continue; } if (MIDI_IS_CONTROL_CHANNEL_VOLUME(ctrlEvent.param) && (fHints & PLUGIN_CAN_VOLUME) > 0) { value = ctrlEvent.value*127.0f/100.0f; setVolume(value, false, false); postponeRtEvent(kPluginPostRtEventParameterChange, PARAMETER_VOLUME, 0, value); continue; } if (MIDI_IS_CONTROL_BALANCE(ctrlEvent.param) && (fHints & PLUGIN_CAN_BALANCE) > 0) { float left, right; value = ctrlEvent.value/0.5f - 1.0f; if (value < 0.0f) { left = -1.0f; right = (value*2.0f)+1.0f; } else if (value > 0.0f) { left = (value*2.0f)-1.0f; right = 1.0f; } else { left = -1.0f; right = 1.0f; } setBalanceLeft(left, false, false); setBalanceRight(right, false, false); postponeRtEvent(kPluginPostRtEventParameterChange, PARAMETER_BALANCE_LEFT, 0, left); postponeRtEvent(kPluginPostRtEventParameterChange, PARAMETER_BALANCE_RIGHT, 0, right); continue; } } // Control plugin parameters for (k=0; k < kData->param.count; ++k) { if (kData->param.data[k].midiChannel != event.channel) continue; if (kData->param.data[k].midiCC != ctrlEvent.param) continue; if (kData->param.data[k].type != PARAMETER_INPUT) continue; if ((kData->param.data[k].hints & PARAMETER_IS_AUTOMABLE) == 0) continue; float value; if (kData->param.data[k].hints & PARAMETER_IS_BOOLEAN) { value = (ctrlEvent.value < 0.5f) ? kData->param.ranges[k].min : kData->param.ranges[k].max; } else { value = kData->param.ranges[i].unnormalizeValue(ctrlEvent.value); if (kData->param.data[k].hints & PARAMETER_IS_INTEGER) value = std::rint(value); } setParameterValue(k, value, false, false, false); postponeRtEvent(kPluginPostRtEventParameterChange, static_cast(k), 0, value); } break; } case kEngineControlEventTypeMidiBank: if (event.channel < 16 && (fOptions & PLUGIN_OPTION_MAP_PROGRAM_CHANGES) != 0) nextBankIds[event.channel] = ctrlEvent.param; break; case kEngineControlEventTypeMidiProgram: if (event.channel < 16 && (fOptions & PLUGIN_OPTION_MAP_PROGRAM_CHANGES) != 0) { const uint32_t bankId = nextBankIds[event.channel]; const uint32_t progId = ctrlEvent.param; for (k=0; k < kData->midiprog.count; ++k) { if (kData->midiprog.data[k].bank == bankId && kData->midiprog.data[k].program == progId) { if (event.channel == kData->ctrlChannel) { setMidiProgram(k, false, false, false); postponeRtEvent(kPluginPostRtEventMidiProgramChange, k, 0, 0.0f); } else fluid_synth_program_select(fSynth, event.channel, fSynthId, bankId, progId); break; } } } break; case kEngineControlEventTypeAllSoundOff: if (event.channel == kData->ctrlChannel) { if (! allNotesOffSent) { sendMidiAllNotesOff(); allNotesOffSent = true; } postponeRtEvent(kPluginPostRtEventParameterChange, PARAMETER_ACTIVE, 0, 0.0f); postponeRtEvent(kPluginPostRtEventParameterChange, PARAMETER_ACTIVE, 0, 1.0f); if (fOptions & PLUGIN_OPTION_SEND_ALL_SOUND_OFF) { #ifdef FLUIDSYNTH_VERSION_NEW_API fluid_synth_all_sounds_off(fSynth, event.channel); #else fluid_synth_cc(f_synth, event.channel, MIDI_CONTROL_ALL_SOUND_OFF, 0); #endif } } break; case kEngineControlEventTypeAllNotesOff: if (event.channel == kData->ctrlChannel) { if (! allNotesOffSent) { sendMidiAllNotesOff(); allNotesOffSent = true; } if (fOptions & PLUGIN_OPTION_SEND_ALL_SOUND_OFF) { #ifdef FLUIDSYNTH_VERSION_NEW_API fluid_synth_all_notes_off(fSynth, event.channel); #else fluid_synth_cc(f_synth, event.channel, MIDI_CONTROL_ALL_NOTES_OFF, 0); #endif } } break; } break; } case kEngineEventTypeMidi: { const EngineMidiEvent& midiEvent = event.midi; uint8_t status = MIDI_GET_STATUS_FROM_DATA(midiEvent.data); uint8_t channel = event.channel; // Fix bad note-off if (MIDI_IS_STATUS_NOTE_ON(status) && midiEvent.data[2] == 0) status -= 0x10; if (MIDI_IS_STATUS_NOTE_OFF(status)) { const uint8_t note = midiEvent.data[1]; fluid_synth_noteoff(fSynth, channel, note); postponeRtEvent(kPluginPostRtEventNoteOff, channel, note, 0.0f); } else if (MIDI_IS_STATUS_NOTE_ON(status)) { const uint8_t note = midiEvent.data[1]; const uint8_t velo = midiEvent.data[2]; fluid_synth_noteon(fSynth, channel, note, velo); postponeRtEvent(kPluginPostRtEventNoteOn, channel, note, velo); } else if (MIDI_IS_STATUS_POLYPHONIC_AFTERTOUCH(status) && (fOptions & PLUGIN_OPTION_SEND_NOTE_AFTERTOUCH) != 0) { //const uint8_t note = midiEvent.data[1]; //const uint8_t pressure = midiEvent.data[2]; // TODO, not in fluidsynth API } else if (MIDI_IS_STATUS_CONTROL_CHANGE(status) && (fOptions & PLUGIN_OPTION_SEND_CONTROL_CHANGES) != 0) { const uint8_t control = midiEvent.data[1]; const uint8_t value = midiEvent.data[2]; fluid_synth_cc(fSynth, channel, control, value); } else if (MIDI_IS_STATUS_AFTERTOUCH(status) && (fOptions & PLUGIN_OPTION_SEND_CHANNEL_PRESSURE) != 0) { const uint8_t pressure = midiEvent.data[1]; fluid_synth_channel_pressure(fSynth, channel, pressure);; } else if (MIDI_IS_STATUS_PITCH_WHEEL_CONTROL(status) && (fOptions & PLUGIN_OPTION_SEND_PITCHBEND) != 0) { const uint8_t lsb = midiEvent.data[1]; const uint8_t msb = midiEvent.data[2]; fluid_synth_pitch_bend(fSynth, channel, (msb << 7) | lsb); } break; } } } kData->postRtEvents.trySplice(); if (frames > timeOffset) processSingle(outBuffer, frames - timeOffset, timeOffset); } // End of Event Input and Processing CARLA_PROCESS_CONTINUE_CHECK; // -------------------------------------------------------------------------------------------------------- // Control Output { k = FluidSynthVoiceCount; fParamBuffers[k] = fluid_synth_get_active_voice_count(fSynth); kData->param.ranges[k].fixValue(fParamBuffers[k]); if (kData->param.data[k].midiCC > 0) { double value = kData->param.ranges[k].normalizeValue(fParamBuffers[k]); kData->event.portOut->writeControlEvent(0, kData->param.data[k].midiChannel, kEngineControlEventTypeParameter, kData->param.data[k].midiCC, value); } } // End of Control Output } bool processSingle(float** const outBuffer, const uint32_t frames, const uint32_t timeOffset) { CARLA_ASSERT(outBuffer != nullptr); CARLA_ASSERT(frames > 0); if (outBuffer == nullptr) return false; if (frames == 0) return false; uint32_t i, k; // -------------------------------------------------------------------------------------------------------- // Try lock, silence otherwise if (kData->engine->isOffline()) { kData->singleMutex.lock(); } else if (! kData->singleMutex.tryLock()) { for (i=0; i < kData->audioOut.count; ++i) { for (k=0; k < frames; ++k) outBuffer[i][k+timeOffset] = 0.0f; } return false; } // -------------------------------------------------------------------------------------------------------- // Fill plugin buffers and Run plugin if (kUses16Outs) { for (i=0; i < kData->audioOut.count; ++i) carla_zeroFloat(fAudio16Buffers[i], frames); fluid_synth_process(fSynth, frames, 0, nullptr, kData->audioOut.count, fAudio16Buffers); } else fluid_synth_write_float(fSynth, frames, outBuffer[0] + timeOffset, 0, 1, outBuffer[1] + timeOffset, 0, 1); // -------------------------------------------------------------------------------------------------------- // Post-processing (volume and balance) { // note - balance not possible with kUses16Outs, so we can safely skip fAudioOutBuffers const bool doVolume = (fHints & PLUGIN_CAN_VOLUME) > 0 && kData->postProc.volume != 1.0f; const bool doBalance = (fHints & PLUGIN_CAN_BALANCE) > 0 && (kData->postProc.balanceLeft != -1.0f || kData->postProc.balanceRight != 1.0f); float oldBufLeft[doBalance ? frames : 1]; for (i=0; i < kData->audioOut.count; ++i) { // Balance if (doBalance) { if (i % 2 == 0) carla_copyFloat(oldBufLeft, outBuffer[i]+timeOffset, frames); float balRangeL = (kData->postProc.balanceLeft + 1.0f)/2.0f; float balRangeR = (kData->postProc.balanceRight + 1.0f)/2.0f; for (k=0; k < frames; ++k) { if (i % 2 == 0) { // left outBuffer[i][k+timeOffset] = oldBufLeft[k] * (1.0f - balRangeL); outBuffer[i][k+timeOffset] += outBuffer[i+1][k+timeOffset] * (1.0f - balRangeR); } else { // right outBuffer[i][k+timeOffset] = outBuffer[i][k+timeOffset] * balRangeR; outBuffer[i][k+timeOffset] += oldBufLeft[k] * balRangeL; } } } // Volume if (kUses16Outs) { for (k=0; k < frames; ++k) outBuffer[i][k+timeOffset] = fAudio16Buffers[i][k] * kData->postProc.volume; } else if (doVolume) { for (k=0; k < frames; ++k) outBuffer[i][k+timeOffset] *= kData->postProc.volume; } } } // End of Post-processing // -------------------------------------------------------------------------------------------------------- kData->singleMutex.unlock(); return true; } void bufferSizeChanged(const uint32_t newBufferSize) override { if (! kUses16Outs) return; for (uint32_t i=0; i < kData->audioOut.count; ++i) { if (fAudio16Buffers[i] != nullptr) delete[] fAudio16Buffers[i]; fAudio16Buffers[i] = new float[newBufferSize]; } } // ------------------------------------------------------------------- // Plugin buffers void clearBuffers() override { carla_debug("FluidSynthPlugin::clearBuffers() - start"); if (fAudio16Buffers != nullptr) { for (uint32_t i=0; i < kData->audioOut.count; ++i) { if (fAudio16Buffers[i] != nullptr) { delete[] fAudio16Buffers[i]; fAudio16Buffers[i] = nullptr; } } delete[] fAudio16Buffers; fAudio16Buffers = nullptr; } CarlaPlugin::clearBuffers(); carla_debug("FluidSynthPlugin::clearBuffers() - end"); } // ------------------------------------------------------------------- const void* getExtraStuff() override { return kUses16Outs ? (const void*)0x1 : nullptr; } bool init(const char* const filename, const char* const name, const char* const label) { CARLA_ASSERT(fSynth != nullptr); CARLA_ASSERT(filename != nullptr); CARLA_ASSERT(label != nullptr); // --------------------------------------------------------------- // first checks if (kData->engine == nullptr) { return false; } if (kData->client != nullptr) { kData->engine->setLastError("Plugin client is already registered"); return false; } if (fSynth == nullptr) { kData->engine->setLastError("null synth"); return false; } if (filename == nullptr) { kData->engine->setLastError("null filename"); return false; } if (label == nullptr) { kData->engine->setLastError("null label"); return false; } // --------------------------------------------------------------- // open soundfont fSynthId = fluid_synth_sfload(fSynth, filename, 0); if (fSynthId < 0) { kData->engine->setLastError("Failed to load SoundFont file"); return false; } // --------------------------------------------------------------- // get info fFilename = filename; fLabel = label; if (name != nullptr) fName = kData->engine->getUniquePluginName(name); else fName = kData->engine->getUniquePluginName(label); // --------------------------------------------------------------- // register client kData->client = kData->engine->addClient(this); if (kData->client == nullptr || ! kData->client->isOk()) { kData->engine->setLastError("Failed to register plugin client"); return false; } // --------------------------------------------------------------- // load plugin settings { // set default options fOptions = 0x0; fOptions |= PLUGIN_OPTION_MAP_PROGRAM_CHANGES; fOptions |= PLUGIN_OPTION_SEND_CHANNEL_PRESSURE; fOptions |= PLUGIN_OPTION_SEND_NOTE_AFTERTOUCH; fOptions |= PLUGIN_OPTION_SEND_PITCHBEND; fOptions |= PLUGIN_OPTION_SEND_ALL_SOUND_OFF; // load settings kData->idStr = "SF2/"; kData->idStr += label; fOptions = kData->loadSettings(fOptions, availableOptions()); } return true; } private: enum FluidSynthInputParameters { FluidSynthReverbOnOff = 0, FluidSynthReverbRoomSize = 1, FluidSynthReverbDamp = 2, FluidSynthReverbLevel = 3, FluidSynthReverbWidth = 4, FluidSynthChorusOnOff = 5, FluidSynthChorusNr = 6, FluidSynthChorusLevel = 7, FluidSynthChorusSpeedHz = 8, FluidSynthChorusDepthMs = 9, FluidSynthChorusType = 10, FluidSynthPolyphony = 11, FluidSynthInterpolation = 12, FluidSynthVoiceCount = 13, FluidSynthParametersMax = 14 }; const bool kUses16Outs; CarlaString fLabel; fluid_settings_t* fSettings; fluid_synth_t* fSynth; int fSynthId; float** fAudio16Buffers; float fParamBuffers[FluidSynthParametersMax]; CARLA_DECLARE_NON_COPYABLE_WITH_LEAK_DETECTOR(FluidSynthPlugin) }; CARLA_BACKEND_END_NAMESPACE #else // WANT_FLUIDSYNTH # warning fluidsynth not available (no SF2 support) #endif CARLA_BACKEND_START_NAMESPACE CarlaPlugin* CarlaPlugin::newSF2(const Initializer& init, const bool use16Outs) { carla_debug("CarlaPlugin::newSF2({%p, \"%s\", \"%s\", \"%s\"}, %s)", init.engine, init.filename, init.name, init.label, bool2str(use16Outs)); #ifdef WANT_FLUIDSYNTH if (! fluid_is_soundfont(init.filename)) { init.engine->setLastError("Requested file is not a valid SoundFont"); return nullptr; } if (init.engine->getProccessMode() == PROCESS_MODE_CONTINUOUS_RACK && use16Outs) { init.engine->setLastError("Carla's rack mode can only work with Stereo modules, please choose the 2-channel only SoundFont version"); return nullptr; } FluidSynthPlugin* const plugin(new FluidSynthPlugin(init.engine, init.id, use16Outs)); if (! plugin->init(init.filename, init.name, init.label)) { delete plugin; return nullptr; } plugin->reload(); return plugin; #else init.engine->setLastError("fluidsynth support not available"); return nullptr; // unused (void)use16Outs; #endif } CARLA_BACKEND_END_NAMESPACE