/* ============================================================================== This file is part of the Water library. Copyright (c) 2016 ROLI Ltd. Copyright (C) 2017-2019 Filipe Coelho Permission is granted to use this software under the terms of the ISC license http://www.isc.org/downloads/software-support-policy/isc-license/ Permission to use, copy, modify, and/or distribute this software for any purpose with or without fee is hereby granted, provided that the above copyright notice and this permission notice appear in all copies. THE SOFTWARE IS PROVIDED "AS IS" AND ISC DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL ISC BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. ============================================================================== */ #ifndef WATER_ARRAY_H_INCLUDED #define WATER_ARRAY_H_INCLUDED #include "../containers/ArrayAllocationBase.h" #include "../containers/ElementComparator.h" namespace water { //============================================================================== /** Holds a resizable array of primitive or copy-by-value objects. Examples of arrays are: Array, Array or Array The Array class can be used to hold simple, non-polymorphic objects as well as primitive types - to do so, the class must fulfil these requirements: - it must have a copy constructor and assignment operator - it must be able to be relocated in memory by a memcpy without this causing any problems - so objects whose functionality relies on external pointers or references to themselves can not be used. You can of course have an array of pointers to any kind of object, e.g. Array, but if you do this, the array doesn't take any ownership of the objects - see the OwnedArray class or the ReferenceCountedArray class for more powerful ways of holding lists of objects. For holding lists of strings, you can use Array\, but it's usually better to use the specialised class StringArray, which provides more useful functions. @see OwnedArray, ReferenceCountedArray, StringArray, CriticalSection */ template class Array { private: typedef PARAMETER_TYPE (ElementType) ParameterType; public: //============================================================================== /** Creates an empty array. */ Array() noexcept : data(), numUsed(0) { } /** Creates a copy of another array. @param other the array to copy */ Array (const Array& other) noexcept : data(), numUsed(0) { CARLA_SAFE_ASSERT_RETURN(data.setAllocatedSize (other.numUsed),); numUsed = other.numUsed; for (int i = 0; i < numUsed; ++i) new (data.elements + i) ElementType (other.data.elements[i]); } /** Initalises from a null-terminated C array of values. @param values the array to copy from */ template explicit Array (const TypeToCreateFrom* values) noexcept : numUsed (0) { while (*values != TypeToCreateFrom()) { CARLA_SAFE_ASSERT_BREAK(add (*values++)); } } /** Initalises from a C array of values. @param values the array to copy from @param numValues the number of values in the array */ template Array (const TypeToCreateFrom* values, int numValues) noexcept : numUsed (numValues) { CARLA_SAFE_ASSERT_RETURN(data.setAllocatedSize (numValues),); for (int i = 0; i < numValues; ++i) new (data.elements + i) ElementType (values[i]); } /** Destructor. */ ~Array() noexcept { deleteAllElements(); } /** Copies another array. @param other the array to copy */ Array& operator= (const Array& other) noexcept { if (this != &other) { Array otherCopy (other); swapWith (otherCopy); } return *this; } //============================================================================== /** Compares this array to another one. Two arrays are considered equal if they both contain the same set of elements, in the same order. @param other the other array to compare with */ template bool operator== (const OtherArrayType& other) const { if (numUsed != other.numUsed) return false; for (int i = numUsed; --i >= 0;) if (! (data.elements [i] == other.data.elements [i])) return false; return true; } /** Compares this array to another one. Two arrays are considered equal if they both contain the same set of elements, in the same order. @param other the other array to compare with */ template bool operator!= (const OtherArrayType& other) const { return ! operator== (other); } //============================================================================== /** Removes all elements from the array. This will remove all the elements, and free any storage that the array is using. To clear the array without freeing the storage, use the clearQuick() method instead. @see clearQuick */ void clear() noexcept { deleteAllElements(); data.setAllocatedSize (0); numUsed = 0; } /** Removes all elements from the array without freeing the array's allocated storage. @see clear */ void clearQuick() noexcept { deleteAllElements(); numUsed = 0; } //============================================================================== /** Returns the current number of elements in the array. */ inline int size() const noexcept { return numUsed; } /** Returns true if the array is empty, false otherwise. */ inline bool isEmpty() const noexcept { return size() == 0; } /** Returns one of the elements in the array. If the index passed in is beyond the range of valid elements, this will return a default value. If you're certain that the index will always be a valid element, you can call getUnchecked() instead, which is faster. @param index the index of the element being requested (0 is the first element in the array) @see getUnchecked, getFirst, getLast */ ElementType operator[] (const int index) const { if (isPositiveAndBelow (index, numUsed)) { wassert (data.elements != nullptr); return data.elements [index]; } return ElementType(); } /** Returns one of the elements in the array, without checking the index passed in. Unlike the operator[] method, this will try to return an element without checking that the index is within the bounds of the array, so should only be used when you're confident that it will always be a valid index. @param index the index of the element being requested (0 is the first element in the array) @see operator[], getFirst, getLast */ inline ElementType getUnchecked (const int index) const { wassert (isPositiveAndBelow (index, numUsed) && data.elements != nullptr); return data.elements [index]; } /** Returns a direct reference to one of the elements in the array, without checking the index passed in. This is like getUnchecked, but returns a direct reference to the element, so that you can alter it directly. Obviously this can be dangerous, so only use it when absolutely necessary. @param index the index of the element being requested (0 is the first element in the array) @see operator[], getFirst, getLast */ inline ElementType& getReference (const int index) const noexcept { wassert (isPositiveAndBelow (index, numUsed) && data.elements != nullptr); return data.elements [index]; } /** Returns the first element in the array, or a default value if the array is empty. @see operator[], getUnchecked, getLast */ inline ElementType getFirst() const { if (numUsed > 0) { wassert (data.elements != nullptr); return data.elements[0]; } return ElementType(); } /** Returns the last element in the array, or a default value if the array is empty. @see operator[], getUnchecked, getFirst */ inline ElementType getLast() const { if (numUsed > 0) { wassert (data.elements != nullptr); return data.elements[numUsed - 1]; } return ElementType(); } /** Returns a pointer to the actual array data. This pointer will only be valid until the next time a non-const method is called on the array. */ inline ElementType* getRawDataPointer() noexcept { return data.elements; } //============================================================================== /** Returns a pointer to the first element in the array. This method is provided for compatibility with standard C++ iteration mechanisms. */ inline ElementType* begin() const noexcept { return data.elements; } /** Returns a pointer to the element which follows the last element in the array. This method is provided for compatibility with standard C++ iteration mechanisms. */ inline ElementType* end() const noexcept { #ifdef DEBUG if (data.elements == nullptr || numUsed <= 0) // (to keep static analysers happy) return data.elements; #endif return data.elements + numUsed; } //============================================================================== /** Finds the index of the first element which matches the value passed in. This will search the array for the given object, and return the index of its first occurrence. If the object isn't found, the method will return -1. @param elementToLookFor the value or object to look for @returns the index of the object, or -1 if it's not found */ int indexOf (ParameterType elementToLookFor) const { const ElementType* e = data.elements.getData(); const ElementType* const end_ = e + numUsed; for (; e != end_; ++e) if (elementToLookFor == *e) return static_cast (e - data.elements.getData()); return -1; } /** Returns true if the array contains at least one occurrence of an object. @param elementToLookFor the value or object to look for @returns true if the item is found */ bool contains (ParameterType elementToLookFor) const { const ElementType* e = data.elements.getData(); const ElementType* const end_ = e + numUsed; for (; e != end_; ++e) if (elementToLookFor == *e) return true; return false; } //============================================================================== /** Appends a new element at the end of the array. @param newElement the new object to add to the array @see set, insert, addIfNotAlreadyThere, addSorted, addUsingDefaultSort, addArray */ bool add (const ElementType& newElement) noexcept { if (! data.ensureAllocatedSize (static_cast(numUsed + 1))) return false; new (data.elements + numUsed++) ElementType (newElement); return true; } /** Inserts a new element into the array at a given position. If the index is less than 0 or greater than the size of the array, the element will be added to the end of the array. Otherwise, it will be inserted into the array, moving all the later elements along to make room. @param indexToInsertAt the index at which the new element should be inserted (pass in -1 to add it to the end) @param newElement the new object to add to the array @see add, addSorted, addUsingDefaultSort, set */ bool insert (int indexToInsertAt, ParameterType newElement) noexcept { if (! data.ensureAllocatedSize (numUsed + 1)) return false; if (isPositiveAndBelow (indexToInsertAt, numUsed)) { ElementType* const insertPos = data.elements + indexToInsertAt; const int numberToMove = numUsed - indexToInsertAt; if (numberToMove > 0) data.moveMemory (insertPos + 1, insertPos, numberToMove); new (insertPos) ElementType (newElement); ++numUsed; } else { new (data.elements + numUsed++) ElementType (newElement); } return true; } /** Inserts multiple copies of an element into the array at a given position. If the index is less than 0 or greater than the size of the array, the element will be added to the end of the array. Otherwise, it will be inserted into the array, moving all the later elements along to make room. @param indexToInsertAt the index at which the new element should be inserted @param newElement the new object to add to the array @param numberOfTimesToInsertIt how many copies of the value to insert @see insert, add, addSorted, set */ bool insertMultiple (int indexToInsertAt, ParameterType newElement, int numberOfTimesToInsertIt) { if (numberOfTimesToInsertIt > 0) { if (! data.ensureAllocatedSize (numUsed + numberOfTimesToInsertIt)) return false; ElementType* insertPos; if (isPositiveAndBelow (indexToInsertAt, numUsed)) { insertPos = data.elements + indexToInsertAt; const int numberToMove = numUsed - indexToInsertAt; data.moveMemory (insertPos + numberOfTimesToInsertIt, insertPos, numberToMove); } else { insertPos = data.elements + numUsed; } numUsed += numberOfTimesToInsertIt; while (--numberOfTimesToInsertIt >= 0) { new (insertPos) ElementType (newElement); ++insertPos; // NB: this increment is done separately from the // new statement to avoid a compiler bug in VS2014 } } return true; } #if 0 /** Inserts an array of values into this array at a given position. If the index is less than 0 or greater than the size of the array, the new elements will be added to the end of the array. Otherwise, they will be inserted into the array, moving all the later elements along to make room. @param indexToInsertAt the index at which the first new element should be inserted @param newElements the new values to add to the array @param numberOfElements how many items are in the array @see insert, add, addSorted, set */ bool insertArray (int indexToInsertAt, const ElementType* newElements, int numberOfElements) { if (numberOfElements > 0) { if (! data.ensureAllocatedSize (numUsed + numberOfElements)) return false; ElementType* insertPos = data.elements; if (isPositiveAndBelow (indexToInsertAt, numUsed)) { insertPos += indexToInsertAt; const int numberToMove = numUsed - indexToInsertAt; std::memmove (insertPos + numberOfElements, insertPos, (size_t) numberToMove * sizeof (ElementType)); } else { insertPos += numUsed; } numUsed += numberOfElements; while (--numberOfElements >= 0) new (insertPos++) ElementType (*newElements++); } return true; } #endif /** Appends a new element at the end of the array as long as the array doesn't already contain it. If the array already contains an element that matches the one passed in, nothing will be done. @param newElement the new object to add to the array @return true if the element was added to the array; false otherwise. */ bool addIfNotAlreadyThere (ParameterType newElement) { if (contains (newElement)) return false; return add (newElement); } /** Replaces an element with a new value. If the index is less than zero, this method does nothing. If the index is beyond the end of the array, the item is added to the end of the array. @param indexToChange the index whose value you want to change @param newValue the new value to set for this index. @see add, insert */ void set (const int indexToChange, ParameterType newValue) { wassert (indexToChange >= 0); if (isPositiveAndBelow (indexToChange, numUsed)) { wassert (data.elements != nullptr); data.elements [indexToChange] = newValue; } else if (indexToChange >= 0) { data.ensureAllocatedSize (numUsed + 1); new (data.elements + numUsed++) ElementType (newValue); } } /** Replaces an element with a new value without doing any bounds-checking. This just sets a value directly in the array's internal storage, so you'd better make sure it's in range! @param indexToChange the index whose value you want to change @param newValue the new value to set for this index. @see set, getUnchecked */ void setUnchecked (const int indexToChange, ParameterType newValue) { wassert (isPositiveAndBelow (indexToChange, numUsed)); data.elements [indexToChange] = newValue; } /** Adds elements from an array to the end of this array. @param elementsToAdd an array of some kind of object from which elements can be constructed. @param numElementsToAdd how many elements are in this other array @see add */ template void addArray (const Type* elementsToAdd, int numElementsToAdd) { if (numElementsToAdd > 0) { data.ensureAllocatedSize (numUsed + numElementsToAdd); while (--numElementsToAdd >= 0) { new (data.elements + numUsed) ElementType (*elementsToAdd++); ++numUsed; } } } /** Adds elements from a null-terminated array of pointers to the end of this array. @param elementsToAdd an array of pointers to some kind of object from which elements can be constructed. This array must be terminated by a nullptr @see addArray */ template void addNullTerminatedArray (const Type* const* elementsToAdd) { int num = 0; for (const Type* const* e = elementsToAdd; *e != nullptr; ++e) ++num; addArray (elementsToAdd, num); } /** This swaps the contents of this array with those of another array. If you need to exchange two arrays, this is vastly quicker than using copy-by-value because it just swaps their internal pointers. */ template void swapWith (OtherArrayType& otherArray) noexcept { data.swapWith (otherArray.data); std::swap (numUsed, otherArray.numUsed); } /** Adds elements from another array to the end of this array. @param arrayToAddFrom the array from which to copy the elements @param startIndex the first element of the other array to start copying from @param numElementsToAdd how many elements to add from the other array. If this value is negative or greater than the number of available elements, all available elements will be copied. @see add */ template void addArray (const OtherArrayType& arrayToAddFrom, int startIndex = 0, int numElementsToAdd = -1) { if (startIndex < 0) { wassertfalse; startIndex = 0; } if (numElementsToAdd < 0 || startIndex + numElementsToAdd > arrayToAddFrom.size()) numElementsToAdd = arrayToAddFrom.size() - startIndex; while (--numElementsToAdd >= 0) add (arrayToAddFrom.getUnchecked (startIndex++)); } /** This will enlarge or shrink the array to the given number of elements, by adding or removing items from its end. If the array is smaller than the given target size, empty elements will be appended until its size is as specified. If its size is larger than the target, items will be removed from its end to shorten it. */ void resize (const int targetNumItems) { wassert (targetNumItems >= 0); const int numToAdd = targetNumItems - numUsed; if (numToAdd > 0) insertMultiple (numUsed, ElementType(), numToAdd); else if (numToAdd < 0) removeRange (targetNumItems, -numToAdd); } /** Inserts a new element into the array, assuming that the array is sorted. This will use a comparator to find the position at which the new element should go. If the array isn't sorted, the behaviour of this method will be unpredictable. @param comparator the comparator to use to compare the elements - see the sort() method for details about the form this object should take @param newElement the new element to insert to the array @returns the index at which the new item was added @see addUsingDefaultSort, add, sort */ template int addSorted (ElementComparator& comparator, ParameterType newElement) { const int index = findInsertIndexInSortedArray (comparator, data.elements.getData(), newElement, 0, numUsed); insert (index, newElement); return index; } /** Inserts a new element into the array, assuming that the array is sorted. This will use the DefaultElementComparator class for sorting, so your ElementType must be suitable for use with that class. If the array isn't sorted, the behaviour of this method will be unpredictable. @param newElement the new element to insert to the array @see addSorted, sort */ void addUsingDefaultSort (ParameterType newElement) { DefaultElementComparator comparator; addSorted (comparator, newElement); } /** Finds the index of an element in the array, assuming that the array is sorted. This will use a comparator to do a binary-chop to find the index of the given element, if it exists. If the array isn't sorted, the behaviour of this method will be unpredictable. @param comparator the comparator to use to compare the elements - see the sort() method for details about the form this object should take @param elementToLookFor the element to search for @returns the index of the element, or -1 if it's not found @see addSorted, sort */ template int indexOfSorted (ElementComparator& comparator, TargetValueType elementToLookFor) const { ignoreUnused (comparator); // if you pass in an object with a static compareElements() method, this // avoids getting warning messages about the parameter being unused for (int s = 0, e = numUsed;;) { if (s >= e) return -1; if (comparator.compareElements (elementToLookFor, data.elements [s]) == 0) return s; const int halfway = (s + e) / 2; if (halfway == s) return -1; if (comparator.compareElements (elementToLookFor, data.elements [halfway]) >= 0) s = halfway; else e = halfway; } } //============================================================================== /** Removes an element from the array. This will remove the element at a given index, and move back all the subsequent elements to close the gap. If the index passed in is out-of-range, nothing will happen. @param indexToRemove the index of the element to remove @see removeAndReturn, removeFirstMatchingValue, removeAllInstancesOf, removeRange */ void remove (int indexToRemove) { if (isPositiveAndBelow (indexToRemove, numUsed)) { wassert (data.elements != nullptr); removeInternal (indexToRemove); } } /** Removes an element from the array. This will remove the element at a given index, and move back all the subsequent elements to close the gap. If the index passed in is out-of-range, nothing will happen. @param indexToRemove the index of the element to remove @returns the element that has been removed @see removeFirstMatchingValue, removeAllInstancesOf, removeRange */ ElementType removeAndReturn (const int indexToRemove) { if (isPositiveAndBelow (indexToRemove, numUsed)) { wassert (data.elements != nullptr); ElementType removed (data.elements[indexToRemove]); removeInternal (indexToRemove); return removed; } return ElementType(); } /** Removes an element from the array. This will remove the element pointed to by the given iterator, and move back all the subsequent elements to close the gap. If the iterator passed in does not point to an element within the array, behaviour is undefined. @param elementToRemove a pointer to the element to remove @see removeFirstMatchingValue, removeAllInstancesOf, removeRange, removeIf */ void remove (const ElementType* elementToRemove) { wassert (elementToRemove != nullptr); wassert (data.elements != nullptr); const int indexToRemove = int (elementToRemove - data.elements); if (! isPositiveAndBelow (indexToRemove, numUsed)) { wassertfalse; return; } removeInternal (indexToRemove); } /** Removes an item from the array. This will remove the first occurrence of the given element from the array. If the item isn't found, no action is taken. @param valueToRemove the object to try to remove @see remove, removeRange, removeIf */ void removeFirstMatchingValue (ParameterType valueToRemove) { ElementType* const e = data.elements; for (int i = 0; i < numUsed; ++i) { if (valueToRemove == e[i]) { removeInternal (i); break; } } } /** Removes items from the array. This will remove all occurrences of the given element from the array. If no such items are found, no action is taken. @param valueToRemove the object to try to remove @return how many objects were removed. @see remove, removeRange, removeIf */ int removeAllInstancesOf (ParameterType valueToRemove) { int numRemoved = 0; for (int i = numUsed; --i >= 0;) { if (valueToRemove == data.elements[i]) { removeInternal (i); ++numRemoved; } } return numRemoved; } /** Removes items from the array. This will remove all objects from the array that match a condition. If no such items are found, no action is taken. @param predicate the condition when to remove an item. Must be a callable type that takes an ElementType and returns a bool @return how many objects were removed. @see remove, removeRange, removeAllInstancesOf */ template int removeIf (PredicateType predicate) { int numRemoved = 0; for (int i = numUsed; --i >= 0;) { if (predicate (data.elements[i]) == true) { removeInternal (i); ++numRemoved; } } return numRemoved; } /** Removes a range of elements from the array. This will remove a set of elements, starting from the given index, and move subsequent elements down to close the gap. If the range extends beyond the bounds of the array, it will be safely clipped to the size of the array. @param startIndex the index of the first element to remove @param numberToRemove how many elements should be removed @see remove, removeFirstMatchingValue, removeAllInstancesOf, removeIf */ void removeRange (int startIndex, int numberToRemove) { const int endIndex = jlimit (0, numUsed, startIndex + numberToRemove); startIndex = jlimit (0, numUsed, startIndex); numberToRemove = endIndex - startIndex; if (numberToRemove > 0) { #if 1 ElementType* const e = data.elements + startIndex; const int numToShift = numUsed - endIndex; if (numToShift > 0) data.moveMemory (e, e + numberToRemove, numToShift); for (int i = 0; i < numberToRemove; ++i) e[numToShift + i].~ElementType(); #else ElementType* dst = data.elements + startIndex; ElementType* src = dst + numberToRemove; const int numToShift = numUsed - endIndex; for (int i = 0; i < numToShift; ++i) data.moveElement (dst++, std::move (*(src++))); for (int i = 0; i < numberToRemove; ++i) (dst++)->~ElementType(); #endif numUsed -= numberToRemove; minimiseStorageAfterRemoval(); } } /** Removes the last n elements from the array. @param howManyToRemove how many elements to remove from the end of the array @see remove, removeFirstMatchingValue, removeAllInstancesOf, removeRange */ void removeLast (int howManyToRemove = 1) { if (howManyToRemove > numUsed) howManyToRemove = numUsed; for (int i = 1; i <= howManyToRemove; ++i) data.elements [numUsed - i].~ElementType(); numUsed -= howManyToRemove; minimiseStorageAfterRemoval(); } /** Removes any elements which are also in another array. @param otherArray the other array in which to look for elements to remove @see removeValuesNotIn, remove, removeFirstMatchingValue, removeAllInstancesOf, removeRange */ template void removeValuesIn (const OtherArrayType& otherArray) { if (this == &otherArray) { clear(); } else { if (otherArray.size() > 0) { for (int i = numUsed; --i >= 0;) if (otherArray.contains (data.elements [i])) removeInternal (i); } } } /** Removes any elements which are not found in another array. Only elements which occur in this other array will be retained. @param otherArray the array in which to look for elements NOT to remove @see removeValuesIn, remove, removeFirstMatchingValue, removeAllInstancesOf, removeRange */ template void removeValuesNotIn (const OtherArrayType& otherArray) { if (this != &otherArray) { if (otherArray.size() <= 0) { clear(); } else { for (int i = numUsed; --i >= 0;) if (! otherArray.contains (data.elements [i])) removeInternal (i); } } } /** Swaps over two elements in the array. This swaps over the elements found at the two indexes passed in. If either index is out-of-range, this method will do nothing. @param index1 index of one of the elements to swap @param index2 index of the other element to swap */ void swap (const int index1, const int index2) { if (isPositiveAndBelow (index1, numUsed) && isPositiveAndBelow (index2, numUsed)) { std::swap (data.elements [index1], data.elements [index2]); } } //============================================================================== /** Reduces the amount of storage being used by the array. Arrays typically allocate slightly more storage than they need, and after removing elements, they may have quite a lot of unused space allocated. This method will reduce the amount of allocated storage to a minimum. */ bool minimiseStorageOverheads() noexcept { return data.shrinkToNoMoreThan (numUsed); } /** Increases the array's internal storage to hold a minimum number of elements. Calling this before adding a large known number of elements means that the array won't have to keep dynamically resizing itself as the elements are added, and it'll therefore be more efficient. */ bool ensureStorageAllocated (const int minNumElements) noexcept { return data.ensureAllocatedSize (minNumElements); } //============================================================================== /** Sorts the array using a default comparison operation. If the type of your elements isn't supported by the DefaultElementComparator class then you may need to use the other version of sort, which takes a custom comparator. */ void sort() { DefaultElementComparator comparator; sort (comparator); } /** Sorts the elements in the array. This will use a comparator object to sort the elements into order. The object passed must have a method of the form: @code int compareElements (ElementType first, ElementType second); @endcode ..and this method must return: - a value of < 0 if the first comes before the second - a value of 0 if the two objects are equivalent - a value of > 0 if the second comes before the first To improve performance, the compareElements() method can be declared as static or const. @param comparator the comparator to use for comparing elements. @param retainOrderOfEquivalentItems if this is true, then items which the comparator says are equivalent will be kept in the order in which they currently appear in the array. This is slower to perform, but may be important in some cases. If it's false, a faster algorithm is used, but equivalent elements may be rearranged. @see addSorted, indexOfSorted, sortArray */ template void sort (ElementComparator& comparator, const bool retainOrderOfEquivalentItems = false) { ignoreUnused (comparator); // if you pass in an object with a static compareElements() method, this // avoids getting warning messages about the parameter being unused sortArray (comparator, data.elements.getData(), 0, size() - 1, retainOrderOfEquivalentItems); } private: //============================================================================== ArrayAllocationBase data; int numUsed; void removeInternal (const int indexToRemove) { --numUsed; ElementType* const e = data.elements + indexToRemove; e->~ElementType(); const int numberToShift = numUsed - indexToRemove; if (numberToShift > 0) data.moveMemory (e, e + 1, static_cast(numberToShift)); minimiseStorageAfterRemoval(); } inline void deleteAllElements() noexcept { for (int i = 0; i < numUsed; ++i) data.elements[i].~ElementType(); } void minimiseStorageAfterRemoval() { CARLA_SAFE_ASSERT_RETURN(numUsed >= 0,); const size_t snumUsed = static_cast(numUsed); if (data.numAllocated > jmax (minimumAllocatedSize, snumUsed * 2U)) data.shrinkToNoMoreThan (jmax (snumUsed, jmax (minimumAllocatedSize, 64U / sizeof (ElementType)))); } }; } #endif // WATER_ARRAY_H_INCLUDED