// SPDX-FileCopyrightText: 2011-2024 Filipe Coelho // SPDX-License-Identifier: GPL-2.0-or-later #include "CarlaEngineGraph.hpp" #include "CarlaEngineInit.hpp" #include "CarlaEngineInternal.hpp" #include "CarlaBackendUtils.hpp" #include "CarlaMathUtils.hpp" #include "CarlaStringList.hpp" #include "RtLinkedList.hpp" #include "jackbridge/JackBridge.hpp" #if defined(__clang__) # pragma clang diagnostic push # pragma clang diagnostic ignored "-Wconversion" # pragma clang diagnostic ignored "-Wdeprecated-copy" # pragma clang diagnostic ignored "-Weffc++" # pragma clang diagnostic ignored "-Wzero-as-null-pointer-constant" #elif defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6)) # pragma GCC diagnostic push # pragma GCC diagnostic ignored "-Wconversion" # pragma GCC diagnostic ignored "-Weffc++" # pragma GCC diagnostic ignored "-Wzero-as-null-pointer-constant" #endif #include "rtaudio/RtAudio.h" #include "rtmidi/RtMidi.h" #if defined(__clang__) # pragma clang diagnostic pop #elif defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6)) # pragma GCC diagnostic pop #endif CARLA_BACKEND_START_NAMESPACE // ------------------------------------------------------------------------------------------------------------------- // Global static data static CharStringListPtr gDeviceNames; static std::vector gRtAudioApis; // ------------------------------------------------------------------------------------------------------------------- static void initRtAudioAPIsIfNeeded() { static bool needsInit = true; if (! needsInit) return; needsInit = false; // get APIs in a local var, and pass wanted ones into gRtAudioApis std::vector apis; RtAudio::getCompiledApi(apis); for (std::vector::const_iterator it = apis.begin(), end=apis.end(); it != end; ++it) { const RtAudio::Api& api(*it); if (api == RtAudio::UNIX_JACK) { #if defined(CARLA_OS_LINUX) || defined(CARLA_OS_MAC) || defined(CARLA_OS_WIN) if ( ! jackbridge_is_ok()) continue; #else /* NOTE * RtMidi doesn't have a native MIDI backend for these OSes, * Using RtAudio JACK funcitonality is only useful when we need to access the native MIDI APIs. * (JACK audio + ALSA MIDI, or JACK audio + CoreMidi, or JACK audio + Windows MIDI) * Because RtMidi has no native MIDI support outside of win/mac/linux, we skip these RtAudio APIs. * Those OSes can use Carla's JACK support directly, which is much better than RtAudio classes. */ continue; #endif } gRtAudioApis.push_back(api); } } static const char* getRtAudioApiName(const RtAudio::Api api) noexcept { switch (api) { case RtAudio::UNSPECIFIED: return "Unspecified"; case RtAudio::LINUX_ALSA: return "ALSA"; case RtAudio::LINUX_OSS: return "OSS"; case RtAudio::UNIX_PULSE: return "PulseAudio"; case RtAudio::UNIX_JACK: #if defined(CARLA_OS_LINUX) && defined(__LINUX_ALSA__) return "JACK with ALSA-MIDI"; #elif defined(CARLA_OS_MAC) return "JACK with CoreMidi"; #elif defined(CARLA_OS_WIN) return "JACK with WinMM"; #else return "JACK (RtAudio)"; #endif case RtAudio::MACOSX_CORE: return "CoreAudio"; case RtAudio::WINDOWS_ASIO: return "ASIO"; case RtAudio::WINDOWS_DS: return "DirectSound"; case RtAudio::WINDOWS_WASAPI: return "WASAPI"; case RtAudio::RTAUDIO_DUMMY: return "Dummy"; } carla_stderr("CarlaBackend::getRtAudioApiName(%i) - invalid API", api); return nullptr; } static RtMidi::Api getMatchedAudioMidiAPI(const RtAudio::Api rtApi) noexcept { switch (rtApi) { case RtAudio::UNSPECIFIED: return RtMidi::UNSPECIFIED; case RtAudio::LINUX_ALSA: case RtAudio::LINUX_OSS: return RtMidi::LINUX_ALSA; case RtAudio::UNIX_PULSE: case RtAudio::UNIX_JACK: #if defined(CARLA_OS_LINUX) && defined(__LINUX_ALSA__) return RtMidi::LINUX_ALSA; #elif defined(CARLA_OS_MAC) return RtMidi::MACOSX_CORE; #elif defined(CARLA_OS_WIN) return RtMidi::WINDOWS_MM; #else return RtMidi::RTMIDI_DUMMY; #endif case RtAudio::MACOSX_CORE: return RtMidi::MACOSX_CORE; case RtAudio::WINDOWS_ASIO: case RtAudio::WINDOWS_DS: case RtAudio::WINDOWS_WASAPI: return RtMidi::WINDOWS_MM; case RtAudio::RTAUDIO_DUMMY: return RtMidi::RTMIDI_DUMMY; } return RtMidi::UNSPECIFIED; } // ------------------------------------------------------------------------------------------------------------------- // RtAudio Engine class CarlaEngineRtAudio : public CarlaEngine { public: CarlaEngineRtAudio(const RtAudio::Api api) : CarlaEngine(), fAudio(api), fAudioInterleaved(false), fAudioInCount(0), fAudioOutCount(0), fLastEventTime(0), fDeviceName(), fAudioIntBufIn(nullptr), fAudioIntBufOut(nullptr), fMidiIns(), fMidiInEvents(), fMidiOuts(), fMidiOutMutex(), fMidiOutVector(EngineMidiEvent::kDataSize) { carla_debug("CarlaEngineRtAudio::CarlaEngineRtAudio(%i)", api); // just to make sure pData->options.transportMode = ENGINE_TRANSPORT_MODE_INTERNAL; } ~CarlaEngineRtAudio() override { CARLA_SAFE_ASSERT(fAudioInCount == 0); CARLA_SAFE_ASSERT(fAudioOutCount == 0); CARLA_SAFE_ASSERT(fLastEventTime == 0); carla_debug("CarlaEngineRtAudio::~CarlaEngineRtAudio()"); } // ------------------------------------- bool init(const char* const clientName) override { CARLA_SAFE_ASSERT_RETURN(fAudioInCount == 0, false); CARLA_SAFE_ASSERT_RETURN(fAudioOutCount == 0, false); CARLA_SAFE_ASSERT_RETURN(fLastEventTime == 0, false); CARLA_SAFE_ASSERT_RETURN(clientName != nullptr && clientName[0] != '\0', false); carla_debug("CarlaEngineRtAudio::init(\"%s\")", clientName); if (pData->options.processMode != ENGINE_PROCESS_MODE_CONTINUOUS_RACK && pData->options.processMode != ENGINE_PROCESS_MODE_PATCHBAY) { setLastError("Invalid process mode"); return false; } const bool isDummy(fAudio.getCurrentApi() == RtAudio::RtAudio::RTAUDIO_DUMMY); bool deviceSet = false; RtAudio::StreamParameters iParams, oParams; if (isDummy) { if (pData->options.processMode == ENGINE_PROCESS_MODE_CONTINUOUS_RACK) { setLastError("Cannot use dummy driver in Rack mode"); return false; } fDeviceName = "Dummy"; } else { const uint devCount(fAudio.getDeviceCount()); if (devCount == 0) { setLastError("No audio devices available for this driver"); return false; } if (pData->options.audioDevice != nullptr && pData->options.audioDevice[0] != '\0') { for (uint i=0; i < devCount; ++i) { RtAudio::DeviceInfo devInfo(fAudio.getDeviceInfo(i)); if (devInfo.probed && devInfo.outputChannels > 0 && devInfo.name == pData->options.audioDevice) { deviceSet = true; fDeviceName = devInfo.name.c_str(); iParams.deviceId = i; oParams.deviceId = i; iParams.nChannels = devInfo.inputChannels; oParams.nChannels = devInfo.outputChannels; break; } } } if (! deviceSet) { iParams.deviceId = fAudio.getDefaultInputDevice(); oParams.deviceId = fAudio.getDefaultOutputDevice(); iParams.nChannels = fAudio.getDeviceInfo(iParams.deviceId).inputChannels; oParams.nChannels = fAudio.getDeviceInfo(oParams.deviceId).outputChannels; carla_stdout("No device set, using %i inputs and %i outputs", iParams.nChannels, oParams.nChannels); } if (oParams.nChannels == 0 && pData->options.processMode == ENGINE_PROCESS_MODE_CONTINUOUS_RACK) { setLastError("Current audio setup has no outputs, cannot continue"); return false; } iParams.nChannels = carla_fixedValue(0U, 128U, iParams.nChannels); oParams.nChannels = carla_fixedValue(0U, 128U, oParams.nChannels); fAudioInterleaved = fAudio.getCurrentApi() == RtAudio::UNIX_PULSE; } RtAudio::StreamOptions rtOptions; rtOptions.flags = RTAUDIO_SCHEDULE_REALTIME; #ifndef CARLA_OS_MAC rtOptions.flags |= RTAUDIO_MINIMIZE_LATENCY; #endif rtOptions.numberOfBuffers = pData->options.audioTripleBuffer ? 3 : 2; rtOptions.streamName = clientName; rtOptions.priority = 85; if (fAudio.getCurrentApi() == RtAudio::LINUX_ALSA && ! deviceSet) rtOptions.flags |= RTAUDIO_ALSA_USE_DEFAULT; if (! fAudioInterleaved) rtOptions.flags |= RTAUDIO_NONINTERLEAVED; uint bufferFrames = pData->options.audioBufferSize; try { fAudio.openStream(oParams.nChannels > 0 ? &oParams : nullptr, iParams.nChannels > 0 ? &iParams : nullptr, RTAUDIO_FLOAT32, pData->options.audioSampleRate, &bufferFrames, carla_rtaudio_process_callback, this, &rtOptions, carla_rtaudio_buffer_size_callback); } catch (const RtAudioError& e) { setLastError(e.what()); return false; } if (! pData->init(clientName)) { close(); setLastError("Failed to init internal data"); return false; } pData->bufferSize = bufferFrames; pData->sampleRate = isDummy ? 44100.0 : fAudio.getStreamSampleRate(); pData->initTime(pData->options.transportExtra); fAudioInCount = iParams.nChannels; fAudioOutCount = oParams.nChannels; fLastEventTime = 0; if (fAudioInCount > 0) fAudioIntBufIn = new float[fAudioInCount*bufferFrames]; if (fAudioOutCount > 0) fAudioIntBufOut = new float[fAudioOutCount*bufferFrames]; pData->graph.create(fAudioInCount, fAudioOutCount, 0, 0); try { fAudio.startStream(); } catch (const RtAudioError& e) { close(); setLastError(e.what()); return false; } patchbayRefresh(true, false, false); if (pData->options.processMode == ENGINE_PROCESS_MODE_PATCHBAY) refreshExternalGraphPorts(pData->graph.getPatchbayGraph(), false, false); callback(true, true, ENGINE_CALLBACK_ENGINE_STARTED, 0, pData->options.processMode, pData->options.transportMode, static_cast(pData->bufferSize), static_cast(pData->sampleRate), getCurrentDriverName()); return true; } bool close() override { carla_debug("CarlaEngineRtAudio::close()"); bool hasError = false; // stop stream first if (fAudio.isStreamOpen() && fAudio.isStreamRunning()) { try { fAudio.stopStream(); } catch (const RtAudioError& e) { setLastError(e.what()); hasError = true; } } // clear engine data CarlaEngine::close(); pData->graph.destroy(); for (LinkedList::Itenerator it = fMidiIns.begin2(); it.valid(); it.next()) { static MidiInPort fallback = { nullptr, { '\0' } }; MidiInPort& inPort(it.getValue(fallback)); CARLA_SAFE_ASSERT_CONTINUE(inPort.port != nullptr); inPort.port->cancelCallback(); inPort.port->closePort(); delete inPort.port; } fMidiIns.clear(); fMidiInEvents.clear(); fMidiOutMutex.lock(); for (LinkedList::Itenerator it = fMidiOuts.begin2(); it.valid(); it.next()) { static MidiOutPort fallback = { nullptr, { '\0' } }; MidiOutPort& outPort(it.getValue(fallback)); CARLA_SAFE_ASSERT_CONTINUE(outPort.port != nullptr); outPort.port->closePort(); delete outPort.port; } fMidiOuts.clear(); fMidiOutMutex.unlock(); fAudioInCount = 0; fAudioOutCount = 0; fLastEventTime = 0; fDeviceName.clear(); if (fAudioIntBufIn != nullptr) { delete[] fAudioIntBufIn; fAudioIntBufIn = nullptr; } if (fAudioIntBufOut != nullptr) { delete[] fAudioIntBufOut; fAudioIntBufOut = nullptr; } // close stream if (fAudio.isStreamOpen()) fAudio.closeStream(); return !hasError; } bool hasIdleOnMainThread() const noexcept override { return true; } bool isRunning() const noexcept override { return fAudio.isStreamOpen(); } bool isOffline() const noexcept override { return false; } EngineType getType() const noexcept override { return kEngineTypeRtAudio; } const char* getCurrentDriverName() const noexcept override { return CARLA_BACKEND_NAMESPACE::getRtAudioApiName(fAudio.getCurrentApi()); } // ------------------------------------------------------------------- // Patchbay template bool refreshExternalGraphPorts(Graph* const graph, const bool sendHost, const bool sendOSC) { CARLA_SAFE_ASSERT_RETURN(graph != nullptr, false); char strBuf[STR_MAX+1U]; strBuf[STR_MAX] = '\0'; ExternalGraph& extGraph(graph->extGraph); // --------------------------------------------------------------- // clear last ports extGraph.clear(); // --------------------------------------------------------------- // fill in new ones // Audio In for (uint i=0; i < fAudioInCount; ++i) { std::snprintf(strBuf, STR_MAX, "capture_%i", i+1); PortNameToId portNameToId; portNameToId.setData(kExternalGraphGroupAudioIn, i+1, strBuf, ""); extGraph.audioPorts.ins.append(portNameToId); } // Audio Out for (uint i=0; i < fAudioOutCount; ++i) { std::snprintf(strBuf, STR_MAX, "playback_%i", i+1); PortNameToId portNameToId; portNameToId.setData(kExternalGraphGroupAudioOut, i+1, strBuf, ""); extGraph.audioPorts.outs.append(portNameToId); } // MIDI In try { RtMidiIn midiIn(getMatchedAudioMidiAPI(fAudio.getCurrentApi()), "carla-discovery-in"); for (uint i=0, count = midiIn.getPortCount(); i < count; ++i) { PortNameToId portNameToId; portNameToId.setData(kExternalGraphGroupMidiIn, i+1, midiIn.getPortName(i).c_str(), ""); extGraph.midiPorts.ins.append(portNameToId); } } CARLA_SAFE_EXCEPTION("RtMidiIn discovery"); // MIDI Out try { RtMidiOut midiOut(getMatchedAudioMidiAPI(fAudio.getCurrentApi()), "carla-discovery-out"); for (uint i=0, count = midiOut.getPortCount(); i < count; ++i) { PortNameToId portNameToId; portNameToId.setData(kExternalGraphGroupMidiOut, i+1, midiOut.getPortName(i).c_str(), ""); extGraph.midiPorts.outs.append(portNameToId); } } CARLA_SAFE_EXCEPTION("RtMidiOut discovery"); // --------------------------------------------------------------- // now refresh if (sendHost || sendOSC) graph->refresh(sendHost, sendOSC, true, fDeviceName.buffer()); // --------------------------------------------------------------- // add midi connections for (LinkedList::Itenerator it=fMidiIns.begin2(); it.valid(); it.next()) { static const MidiInPort fallback = { nullptr, { '\0' } }; const MidiInPort& inPort(it.getValue(fallback)); CARLA_SAFE_ASSERT_CONTINUE(inPort.port != nullptr); const uint portId = extGraph.midiPorts.getPortIdFromName(true, inPort.name); CARLA_SAFE_ASSERT_UINT_CONTINUE(portId < extGraph.midiPorts.ins.count(), portId); ConnectionToId connectionToId; connectionToId.setData(++(extGraph.connections.lastId), kExternalGraphGroupMidiIn, portId, kExternalGraphGroupCarla, kExternalGraphCarlaPortMidiIn); std::snprintf(strBuf, STR_MAX, "%i:%i:%i:%i", connectionToId.groupA, connectionToId.portA, connectionToId.groupB, connectionToId.portB); extGraph.connections.list.append(connectionToId); callback(sendHost, sendOSC, ENGINE_CALLBACK_PATCHBAY_CONNECTION_ADDED, connectionToId.id, 0, 0, 0, 0.0f, strBuf); } fMidiOutMutex.lock(); for (LinkedList::Itenerator it=fMidiOuts.begin2(); it.valid(); it.next()) { static const MidiOutPort fallback = { nullptr, { '\0' } }; const MidiOutPort& outPort(it.getValue(fallback)); CARLA_SAFE_ASSERT_CONTINUE(outPort.port != nullptr); const uint portId = extGraph.midiPorts.getPortIdFromName(false, outPort.name); CARLA_SAFE_ASSERT_UINT_CONTINUE(portId < extGraph.midiPorts.outs.count(), portId); ConnectionToId connectionToId; connectionToId.setData(++(extGraph.connections.lastId), kExternalGraphGroupCarla, kExternalGraphCarlaPortMidiOut, kExternalGraphGroupMidiOut, portId); std::snprintf(strBuf, STR_MAX, "%i:%i:%i:%i", connectionToId.groupA, connectionToId.portA, connectionToId.groupB, connectionToId.portB); extGraph.connections.list.append(connectionToId); callback(sendHost, sendOSC, ENGINE_CALLBACK_PATCHBAY_CONNECTION_ADDED, connectionToId.id, 0, 0, 0, 0.0f, strBuf); } fMidiOutMutex.unlock(); return true; } bool patchbayRefresh(const bool sendHost, const bool sendOSC, const bool external) override { CARLA_SAFE_ASSERT_RETURN(pData->graph.isReady(), false); if (pData->options.processMode == ENGINE_PROCESS_MODE_CONTINUOUS_RACK) return refreshExternalGraphPorts(pData->graph.getRackGraph(), sendHost, sendOSC); if (sendHost) pData->graph.setUsingExternalHost(external); if (sendOSC) pData->graph.setUsingExternalOSC(external); if (external) return refreshExternalGraphPorts(pData->graph.getPatchbayGraph(), sendHost, sendOSC); return CarlaEngine::patchbayRefresh(sendHost, sendOSC, false); } // ------------------------------------------------------------------- protected: void handleAudioProcessCallback(void* outputBuffer, void* inputBuffer, uint nframes, double streamTime, RtAudioStreamStatus status) { const PendingRtEventsRunner prt(this, nframes, true); if (status & RTAUDIO_INPUT_OVERFLOW) ++pData->xruns; if (status & RTAUDIO_OUTPUT_UNDERFLOW) ++pData->xruns; // get buffers from RtAudio const float* const insPtr = (const float*)inputBuffer; /* */ float* const outsPtr = (float*)outputBuffer; // assert rtaudio buffers CARLA_SAFE_ASSERT_RETURN(outputBuffer != nullptr,); // set rtaudio buffers as non-interleaved const float* inBuf[fAudioInCount]; /* */ float* outBuf[fAudioOutCount]; if (fAudioInterleaved) { // FIXME - this looks completely wrong! float* inBuf2[fAudioInCount]; for (uint i=0, count=fAudioInCount; ievents.in, kMaxEngineEventInternalCount); carla_zeroStructs(pData->events.out, kMaxEngineEventInternalCount); if (fMidiInEvents.mutex.tryLock()) { uint32_t engineEventIndex = 0; fMidiInEvents.splice(); for (LinkedList::Itenerator it = fMidiInEvents.data.begin2(); it.valid(); it.next()) { static const RtMidiEvent fallback = { 0, 0, { 0 } }; const RtMidiEvent& midiEvent(it.getValue(fallback)); CARLA_SAFE_ASSERT_CONTINUE(midiEvent.size > 0); EngineEvent& engineEvent(pData->events.in[engineEventIndex++]); if (midiEvent.time < pData->timeInfo.frame) { engineEvent.time = 0; } else if (midiEvent.time >= pData->timeInfo.frame + nframes) { carla_stderr("MIDI Event in the future!, %i vs %i", engineEvent.time, pData->timeInfo.frame); engineEvent.time = static_cast(pData->timeInfo.frame) + nframes - 1; } else engineEvent.time = static_cast(midiEvent.time - pData->timeInfo.frame); engineEvent.fillFromMidiData(midiEvent.size, midiEvent.data, 0); if (engineEventIndex >= kMaxEngineEventInternalCount) break; } fMidiInEvents.data.clear(); fMidiInEvents.mutex.unlock(); } pData->graph.process(pData, inBuf, outBuf, nframes); fMidiOutMutex.lock(); if (fMidiOuts.count() > 0) { uint8_t size = 0; uint8_t mdata[3] = { 0, 0, 0 }; uint8_t mdataTmp[EngineMidiEvent::kDataSize]; const uint8_t* mdataPtr; for (ushort i=0; i < kMaxEngineEventInternalCount; ++i) { const EngineEvent& engineEvent(pData->events.out[i]); /**/ if (engineEvent.type == kEngineEventTypeNull) { break; } else if (engineEvent.type == kEngineEventTypeControl) { const EngineControlEvent& ctrlEvent(engineEvent.ctrl); size = ctrlEvent.convertToMidiData(engineEvent.channel, mdata); mdataPtr = mdata; } else if (engineEvent.type == kEngineEventTypeMidi) { const EngineMidiEvent& midiEvent(engineEvent.midi); size = midiEvent.size; CARLA_SAFE_ASSERT_CONTINUE(size > 0); if (size > EngineMidiEvent::kDataSize) { CARLA_SAFE_ASSERT_CONTINUE(midiEvent.dataExt != nullptr); mdataPtr = midiEvent.dataExt; } else { // set first byte mdataTmp[0] = static_cast(midiEvent.data[0] | (engineEvent.channel & MIDI_CHANNEL_BIT)); // copy rest carla_copy(mdataTmp+1, midiEvent.data+1, size-1U); // done mdataPtr = mdataTmp; } } else { continue; } if (size > 0) { fMidiOutVector.assign(mdataPtr, mdataPtr + size); for (LinkedList::Itenerator it=fMidiOuts.begin2(); it.valid(); it.next()) { static MidiOutPort fallback = { nullptr, { '\0' } }; MidiOutPort& outPort(it.getValue(fallback)); CARLA_SAFE_ASSERT_CONTINUE(outPort.port != nullptr); outPort.port->sendMessage(&fMidiOutVector); } } } } fMidiOutMutex.unlock(); if (fAudioInterleaved) { for (uint i=0; i < nframes; ++i) for (uint j=0; jbufferSize, newBufferSize); if (pData->bufferSize == newBufferSize) return; if (fAudioInCount > 0) { delete[] fAudioIntBufIn; fAudioIntBufIn = new float[fAudioInCount*newBufferSize]; } if (fAudioOutCount > 0) { delete[] fAudioIntBufOut; fAudioIntBufOut = new float[fAudioOutCount*newBufferSize]; } pData->bufferSize = newBufferSize; bufferSizeChanged(newBufferSize); } void handleMidiCallback(double timeStamp, std::vector* const message) { const size_t messageSize(message->size()); if (messageSize == 0 || messageSize > EngineMidiEvent::kDataSize) return; timeStamp /= 2; if (timeStamp > 0.95) timeStamp = 0.95; else if (timeStamp < 0.0) timeStamp = 0.0; RtMidiEvent midiEvent; midiEvent.time = pData->timeInfo.frame + uint64_t(timeStamp * (double)pData->bufferSize); if (midiEvent.time < fLastEventTime) midiEvent.time = fLastEventTime; else fLastEventTime = midiEvent.time; midiEvent.size = static_cast(messageSize); size_t i=0; for (; i < messageSize; ++i) midiEvent.data[i] = message->at(i); for (; i < EngineMidiEvent::kDataSize; ++i) midiEvent.data[i] = 0; fMidiInEvents.append(midiEvent); } // ------------------------------------------------------------------- bool connectExternalGraphPort(const uint connectionType, const uint portId, const char* const portName) override { CARLA_SAFE_ASSERT_RETURN(connectionType != 0 || (portName != nullptr && portName[0] != '\0'), false); carla_debug("CarlaEngineRtAudio::connectExternalGraphPort(%u, %u, \"%s\")", connectionType, portId, portName); switch (connectionType) { case kExternalGraphConnectionAudioIn1: case kExternalGraphConnectionAudioIn2: case kExternalGraphConnectionAudioOut1: case kExternalGraphConnectionAudioOut2: return CarlaEngine::connectExternalGraphPort(connectionType, portId, portName); case kExternalGraphConnectionMidiInput: { CarlaString newRtMidiPortName; newRtMidiPortName += getName(); newRtMidiPortName += ":"; newRtMidiPortName += portName; RtMidiIn* rtMidiIn; try { rtMidiIn = new RtMidiIn(getMatchedAudioMidiAPI(fAudio.getCurrentApi()), newRtMidiPortName.buffer(), 512); } CARLA_SAFE_EXCEPTION_RETURN("new RtMidiIn", false); rtMidiIn->ignoreTypes(); rtMidiIn->setCallback(carla_rtmidi_callback, this); bool found = false; uint rtMidiPortIndex; for (uint i=0, count=rtMidiIn->getPortCount(); i < count; ++i) { if (rtMidiIn->getPortName(i) == portName) { found = true; rtMidiPortIndex = i; break; } } if (! found) { delete rtMidiIn; return false; } try { rtMidiIn->openPort(rtMidiPortIndex, portName); } catch(...) { delete rtMidiIn; return false; }; MidiInPort midiPort; midiPort.port = rtMidiIn; std::strncpy(midiPort.name, portName, STR_MAX); midiPort.name[STR_MAX] = '\0'; fMidiIns.append(midiPort); return true; } break; case kExternalGraphConnectionMidiOutput: { CarlaString newRtMidiPortName; newRtMidiPortName += getName(); newRtMidiPortName += ":"; newRtMidiPortName += portName; RtMidiOut* rtMidiOut; try { rtMidiOut = new RtMidiOut(getMatchedAudioMidiAPI(fAudio.getCurrentApi()), newRtMidiPortName.buffer()); } CARLA_SAFE_EXCEPTION_RETURN("new RtMidiOut", false); bool found = false; uint rtMidiPortIndex; for (uint i=0, count=rtMidiOut->getPortCount(); i < count; ++i) { if (rtMidiOut->getPortName(i) == portName) { found = true; rtMidiPortIndex = i; break; } } if (! found) { delete rtMidiOut; return false; } try { rtMidiOut->openPort(rtMidiPortIndex, portName); } catch(...) { delete rtMidiOut; return false; }; MidiOutPort midiPort; midiPort.port = rtMidiOut; std::strncpy(midiPort.name, portName, STR_MAX); midiPort.name[STR_MAX] = '\0'; const CarlaMutexLocker cml(fMidiOutMutex); fMidiOuts.append(midiPort); return true; } break; } return false; } bool disconnectExternalGraphPort(const uint connectionType, const uint portId, const char* const portName) override { CARLA_SAFE_ASSERT_RETURN(connectionType != 0 || (portName != nullptr && portName[0] != '\0'), false); carla_debug("CarlaEngineRtAudio::disconnectExternalGraphPort(%u, %u, \"%s\")", connectionType, portId, portName); switch (connectionType) { case kExternalGraphConnectionAudioIn1: case kExternalGraphConnectionAudioIn2: case kExternalGraphConnectionAudioOut1: case kExternalGraphConnectionAudioOut2: return CarlaEngine::disconnectExternalGraphPort(connectionType, portId, portName); case kExternalGraphConnectionMidiInput: for (LinkedList::Itenerator it=fMidiIns.begin2(); it.valid(); it.next()) { static MidiInPort fallback = { nullptr, { '\0' } }; MidiInPort& inPort(it.getValue(fallback)); CARLA_SAFE_ASSERT_CONTINUE(inPort.port != nullptr); if (std::strncmp(inPort.name, portName, STR_MAX) != 0) continue; inPort.port->cancelCallback(); inPort.port->closePort(); delete inPort.port; fMidiIns.remove(it); return true; } break; case kExternalGraphConnectionMidiOutput: { const CarlaMutexLocker cml(fMidiOutMutex); for (LinkedList::Itenerator it=fMidiOuts.begin2(); it.valid(); it.next()) { static MidiOutPort fallback = { nullptr, { '\0' } }; MidiOutPort& outPort(it.getValue(fallback)); CARLA_SAFE_ASSERT_CONTINUE(outPort.port != nullptr); if (std::strncmp(outPort.name, portName, STR_MAX) != 0) continue; outPort.port->closePort(); delete outPort.port; fMidiOuts.remove(it); return true; } } break; } return false; } // ------------------------------------------------------------------- private: RtAudio fAudio; // useful info bool fAudioInterleaved; uint fAudioInCount; uint fAudioOutCount; uint64_t fLastEventTime; // current device name CarlaString fDeviceName; // temp buffer for interleaved audio float* fAudioIntBufIn; float* fAudioIntBufOut; struct MidiInPort { RtMidiIn* port; char name[STR_MAX+1]; }; struct MidiOutPort { RtMidiOut* port; char name[STR_MAX+1]; }; struct RtMidiEvent { uint64_t time; // needs to compare to internal time uint8_t size; uint8_t data[EngineMidiEvent::kDataSize]; }; struct RtMidiEvents { CarlaMutex mutex; RtLinkedList::Pool dataPool; RtLinkedList data; RtLinkedList dataPending; RtMidiEvents() : mutex(), dataPool("RtMidiEvents", 512, 512), data(dataPool), dataPending(dataPool) {} ~RtMidiEvents() { clear(); } void append(const RtMidiEvent& event) { mutex.lock(); dataPending.append(event); mutex.unlock(); } void clear() { mutex.lock(); data.clear(); dataPending.clear(); mutex.unlock(); } void splice() { if (dataPending.count() > 0) dataPending.moveTo(data, true /* append */); } }; LinkedList fMidiIns; RtMidiEvents fMidiInEvents; LinkedList fMidiOuts; CarlaMutex fMidiOutMutex; std::vector fMidiOutVector; #define handlePtr ((CarlaEngineRtAudio*)userData) static int carla_rtaudio_process_callback(void* outputBuffer, void* inputBuffer, uint nframes, double streamTime, RtAudioStreamStatus status, void* userData) { handlePtr->handleAudioProcessCallback(outputBuffer, inputBuffer, nframes, streamTime, status); return 0; } static bool carla_rtaudio_buffer_size_callback(unsigned int bufferSize, void* userData) { handlePtr->handleBufferSizeCallback(bufferSize); return true; } static void carla_rtmidi_callback(double timeStamp, std::vector* message, void* userData) { handlePtr->handleMidiCallback(timeStamp, message); } #undef handlePtr CARLA_DECLARE_NON_COPYABLE_WITH_LEAK_DETECTOR(CarlaEngineRtAudio) }; // ----------------------------------------- namespace EngineInit { CarlaEngine* newRtAudio(const AudioApi api) { initRtAudioAPIsIfNeeded(); RtAudio::Api rtApi = RtAudio::UNSPECIFIED; switch (api) { case AUDIO_API_NULL: rtApi = RtAudio::RTAUDIO_DUMMY; break; case AUDIO_API_JACK: rtApi = RtAudio::UNIX_JACK; break; case AUDIO_API_OSS: rtApi = RtAudio::LINUX_OSS; break; case AUDIO_API_ALSA: rtApi = RtAudio::LINUX_ALSA; break; case AUDIO_API_PULSEAUDIO: rtApi = RtAudio::UNIX_PULSE; break; case AUDIO_API_COREAUDIO: rtApi = RtAudio::MACOSX_CORE; break; case AUDIO_API_ASIO: rtApi = RtAudio::WINDOWS_ASIO; break; case AUDIO_API_DIRECTSOUND: rtApi = RtAudio::WINDOWS_DS; break; case AUDIO_API_WASAPI: rtApi = RtAudio::WINDOWS_WASAPI; break; } return new CarlaEngineRtAudio(rtApi); } uint getRtAudioApiCount() { initRtAudioAPIsIfNeeded(); return static_cast(gRtAudioApis.size()); } const char* getRtAudioApiName(const uint index) { initRtAudioAPIsIfNeeded(); CARLA_SAFE_ASSERT_RETURN(index < gRtAudioApis.size(), nullptr); return CARLA_BACKEND_NAMESPACE::getRtAudioApiName(gRtAudioApis[index]); } const char* const* getRtAudioApiDeviceNames(const uint index) { initRtAudioAPIsIfNeeded(); if (index >= gRtAudioApis.size()) return nullptr; const RtAudio::Api& api(gRtAudioApis[index]); CarlaStringList devNames; try { RtAudio rtAudio(api); const uint devCount(rtAudio.getDeviceCount()); if (devCount == 0) return nullptr; for (uint i=0; i < devCount; ++i) { RtAudio::DeviceInfo devInfo(rtAudio.getDeviceInfo(i)); if (devInfo.probed && devInfo.outputChannels > 0 /*&& (devInfo.nativeFormats & RTAUDIO_FLOAT32) != 0*/) devNames.append(devInfo.name.c_str()); } } CARLA_SAFE_EXCEPTION_RETURN("RtAudio device names", nullptr); gDeviceNames = devNames.toCharStringListPtr(); return gDeviceNames; } const EngineDriverDeviceInfo* getRtAudioDeviceInfo(const uint index, const char* const deviceName) { initRtAudioAPIsIfNeeded(); if (index >= gRtAudioApis.size()) return nullptr; static EngineDriverDeviceInfo devInfo = { 0x0, nullptr, nullptr }; static uint32_t dummyBufferSizes[] = { 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 0 }; static double dummySampleRates[] = { 22050.0, 32000.0, 44100.0, 48000.0, 88200.0, 96000.0, 176400.0, 192000.0, 0.0 }; // reset devInfo.hints = 0x0; // cleanup if (devInfo.bufferSizes != nullptr && devInfo.bufferSizes != dummyBufferSizes) { delete[] devInfo.bufferSizes; devInfo.bufferSizes = nullptr; } if (devInfo.sampleRates != nullptr && devInfo.sampleRates != dummySampleRates) { delete[] devInfo.sampleRates; devInfo.sampleRates = nullptr; } const RtAudio::Api& api(gRtAudioApis[index]); if (api == RtAudio::UNIX_JACK) { devInfo.bufferSizes = nullptr; devInfo.sampleRates = nullptr; return &devInfo; } RtAudio::DeviceInfo rtAudioDevInfo; try { RtAudio rtAudio(api); const uint devCount(rtAudio.getDeviceCount()); if (devCount == 0) return nullptr; uint i; for (i=0; i < devCount; ++i) { rtAudioDevInfo = rtAudio.getDeviceInfo(i); if (rtAudioDevInfo.name == deviceName) break; } if (i == devCount) rtAudioDevInfo = rtAudio.getDeviceInfo(rtAudio.getDefaultOutputDevice()); } CARLA_SAFE_EXCEPTION_RETURN("RtAudio device discovery", nullptr); // a few APIs can do triple buffer switch (api) { case RtAudio::LINUX_ALSA: case RtAudio::LINUX_OSS: case RtAudio::WINDOWS_DS: devInfo.hints |= ENGINE_DRIVER_DEVICE_CAN_TRIPLE_BUFFER; break; default: break; } // always use default buffer sizes devInfo.bufferSizes = dummyBufferSizes; // valid sample rates if (const size_t sampleRatesCount = rtAudioDevInfo.sampleRates.size()) { double* const sampleRates(new double[sampleRatesCount+1]); for (size_t i=0; i < sampleRatesCount; ++i) sampleRates[i] = rtAudioDevInfo.sampleRates[i]; sampleRates[sampleRatesCount] = 0.0; devInfo.sampleRates = sampleRates; } else { devInfo.sampleRates = dummySampleRates; } return &devInfo; } } // ----------------------------------------- CARLA_BACKEND_END_NAMESPACE