|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264 |
- /*
- ==============================================================================
-
- This file is part of the JUCE library.
- Copyright (c) 2022 - Raw Material Software Limited
-
- JUCE is an open source library subject to commercial or open-source
- licensing.
-
- By using JUCE, you agree to the terms of both the JUCE 7 End-User License
- Agreement and JUCE Privacy Policy.
-
- End User License Agreement: www.juce.com/juce-7-licence
- Privacy Policy: www.juce.com/juce-privacy-policy
-
- Or: You may also use this code under the terms of the GPL v3 (see
- www.gnu.org/licenses).
-
- JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
- EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
- DISCLAIMED.
-
- ==============================================================================
- */
-
- namespace juce
- {
- namespace dsp
- {
-
- /**
- This class contains various fast mathematical function approximations.
-
- @tags{DSP}
- */
- struct FastMathApproximations
- {
- /** Provides a fast approximation of the function cosh(x) using a Pade approximant
- continued fraction, calculated sample by sample.
-
- Note: This is an approximation which works on a limited range. You are
- advised to use input values only between -5 and +5 for limiting the error.
- */
- template <typename FloatType>
- static FloatType cosh (FloatType x) noexcept
- {
- auto x2 = x * x;
- auto numerator = -(39251520 + x2 * (18471600 + x2 * (1075032 + 14615 * x2)));
- auto denominator = -39251520 + x2 * (1154160 + x2 * (-16632 + 127 * x2));
- return numerator / denominator;
- }
-
- /** Provides a fast approximation of the function cosh(x) using a Pade approximant
- continued fraction, calculated on a whole buffer.
-
- Note: This is an approximation which works on a limited range. You are
- advised to use input values only between -5 and +5 for limiting the error.
- */
- template <typename FloatType>
- static void cosh (FloatType* values, size_t numValues) noexcept
- {
- for (size_t i = 0; i < numValues; ++i)
- values[i] = FastMathApproximations::cosh (values[i]);
- }
-
- /** Provides a fast approximation of the function sinh(x) using a Pade approximant
- continued fraction, calculated sample by sample.
-
- Note: This is an approximation which works on a limited range. You are
- advised to use input values only between -5 and +5 for limiting the error.
- */
- template <typename FloatType>
- static FloatType sinh (FloatType x) noexcept
- {
- auto x2 = x * x;
- auto numerator = -x * (11511339840 + x2 * (1640635920 + x2 * (52785432 + x2 * 479249)));
- auto denominator = -11511339840 + x2 * (277920720 + x2 * (-3177720 + x2 * 18361));
- return numerator / denominator;
- }
-
- /** Provides a fast approximation of the function sinh(x) using a Pade approximant
- continued fraction, calculated on a whole buffer.
-
- Note: This is an approximation which works on a limited range. You are
- advised to use input values only between -5 and +5 for limiting the error.
- */
- template <typename FloatType>
- static void sinh (FloatType* values, size_t numValues) noexcept
- {
- for (size_t i = 0; i < numValues; ++i)
- values[i] = FastMathApproximations::sinh (values[i]);
- }
-
- /** Provides a fast approximation of the function tanh(x) using a Pade approximant
- continued fraction, calculated sample by sample.
-
- Note: This is an approximation which works on a limited range. You are
- advised to use input values only between -5 and +5 for limiting the error.
- */
- template <typename FloatType>
- static FloatType tanh (FloatType x) noexcept
- {
- auto x2 = x * x;
- auto numerator = x * (135135 + x2 * (17325 + x2 * (378 + x2)));
- auto denominator = 135135 + x2 * (62370 + x2 * (3150 + 28 * x2));
- return numerator / denominator;
- }
-
- /** Provides a fast approximation of the function tanh(x) using a Pade approximant
- continued fraction, calculated on a whole buffer.
-
- Note: This is an approximation which works on a limited range. You are
- advised to use input values only between -5 and +5 for limiting the error.
- */
- template <typename FloatType>
- static void tanh (FloatType* values, size_t numValues) noexcept
- {
- for (size_t i = 0; i < numValues; ++i)
- values[i] = FastMathApproximations::tanh (values[i]);
- }
-
- //==============================================================================
- /** Provides a fast approximation of the function cos(x) using a Pade approximant
- continued fraction, calculated sample by sample.
-
- Note: This is an approximation which works on a limited range. You are
- advised to use input values only between -pi and +pi for limiting the error.
- */
- template <typename FloatType>
- static FloatType cos (FloatType x) noexcept
- {
- auto x2 = x * x;
- auto numerator = -(-39251520 + x2 * (18471600 + x2 * (-1075032 + 14615 * x2)));
- auto denominator = 39251520 + x2 * (1154160 + x2 * (16632 + x2 * 127));
- return numerator / denominator;
- }
-
- /** Provides a fast approximation of the function cos(x) using a Pade approximant
- continued fraction, calculated on a whole buffer.
-
- Note: This is an approximation which works on a limited range. You are
- advised to use input values only between -pi and +pi for limiting the error.
- */
- template <typename FloatType>
- static void cos (FloatType* values, size_t numValues) noexcept
- {
- for (size_t i = 0; i < numValues; ++i)
- values[i] = FastMathApproximations::cos (values[i]);
- }
-
- /** Provides a fast approximation of the function sin(x) using a Pade approximant
- continued fraction, calculated sample by sample.
-
- Note: This is an approximation which works on a limited range. You are
- advised to use input values only between -pi and +pi for limiting the error.
- */
- template <typename FloatType>
- static FloatType sin (FloatType x) noexcept
- {
- auto x2 = x * x;
- auto numerator = -x * (-11511339840 + x2 * (1640635920 + x2 * (-52785432 + x2 * 479249)));
- auto denominator = 11511339840 + x2 * (277920720 + x2 * (3177720 + x2 * 18361));
- return numerator / denominator;
- }
-
- /** Provides a fast approximation of the function sin(x) using a Pade approximant
- continued fraction, calculated on a whole buffer.
-
- Note: This is an approximation which works on a limited range. You are
- advised to use input values only between -pi and +pi for limiting the error.
- */
- template <typename FloatType>
- static void sin (FloatType* values, size_t numValues) noexcept
- {
- for (size_t i = 0; i < numValues; ++i)
- values[i] = FastMathApproximations::sin (values[i]);
- }
-
- /** Provides a fast approximation of the function tan(x) using a Pade approximant
- continued fraction, calculated sample by sample.
-
- Note: This is an approximation which works on a limited range. You are
- advised to use input values only between -pi/2 and +pi/2 for limiting the error.
- */
- template <typename FloatType>
- static FloatType tan (FloatType x) noexcept
- {
- auto x2 = x * x;
- auto numerator = x * (-135135 + x2 * (17325 + x2 * (-378 + x2)));
- auto denominator = -135135 + x2 * (62370 + x2 * (-3150 + 28 * x2));
- return numerator / denominator;
- }
-
- /** Provides a fast approximation of the function tan(x) using a Pade approximant
- continued fraction, calculated on a whole buffer.
-
- Note: This is an approximation which works on a limited range. You are
- advised to use input values only between -pi/2 and +pi/2 for limiting the error.
- */
- template <typename FloatType>
- static void tan (FloatType* values, size_t numValues) noexcept
- {
- for (size_t i = 0; i < numValues; ++i)
- values[i] = FastMathApproximations::tan (values[i]);
- }
-
- //==============================================================================
- /** Provides a fast approximation of the function exp(x) using a Pade approximant
- continued fraction, calculated sample by sample.
-
- Note: This is an approximation which works on a limited range. You are
- advised to use input values only between -6 and +4 for limiting the error.
- */
- template <typename FloatType>
- static FloatType exp (FloatType x) noexcept
- {
- auto numerator = 1680 + x * (840 + x * (180 + x * (20 + x)));
- auto denominator = 1680 + x *(-840 + x * (180 + x * (-20 + x)));
- return numerator / denominator;
- }
-
- /** Provides a fast approximation of the function exp(x) using a Pade approximant
- continued fraction, calculated on a whole buffer.
-
- Note: This is an approximation which works on a limited range. You are
- advised to use input values only between -6 and +4 for limiting the error.
- */
- template <typename FloatType>
- static void exp (FloatType* values, size_t numValues) noexcept
- {
- for (size_t i = 0; i < numValues; ++i)
- values[i] = FastMathApproximations::exp (values[i]);
- }
-
- /** Provides a fast approximation of the function log(x+1) using a Pade approximant
- continued fraction, calculated sample by sample.
-
- Note: This is an approximation which works on a limited range. You are
- advised to use input values only between -0.8 and +5 for limiting the error.
- */
- template <typename FloatType>
- static FloatType logNPlusOne (FloatType x) noexcept
- {
- auto numerator = x * (7560 + x * (15120 + x * (9870 + x * (2310 + x * 137))));
- auto denominator = 7560 + x * (18900 + x * (16800 + x * (6300 + x * (900 + 30 * x))));
- return numerator / denominator;
- }
-
- /** Provides a fast approximation of the function log(x+1) using a Pade approximant
- continued fraction, calculated on a whole buffer.
-
- Note: This is an approximation which works on a limited range. You are
- advised to use input values only between -0.8 and +5 for limiting the error.
- */
- template <typename FloatType>
- static void logNPlusOne (FloatType* values, size_t numValues) noexcept
- {
- for (size_t i = 0; i < numValues; ++i)
- values[i] = FastMathApproximations::logNPlusOne (values[i]);
- }
- };
-
- } // namespace dsp
- } // namespace juce
|