Audio plugin host https://kx.studio/carla
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

jidctint.c 15KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389
  1. /*
  2. * jidctint.c
  3. *
  4. * Copyright (C) 1991-1998, Thomas G. Lane.
  5. * This file is part of the Independent JPEG Group's software.
  6. * For conditions of distribution and use, see the accompanying README file.
  7. *
  8. * This file contains a slow-but-accurate integer implementation of the
  9. * inverse DCT (Discrete Cosine Transform). In the IJG code, this routine
  10. * must also perform dequantization of the input coefficients.
  11. *
  12. * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
  13. * on each row (or vice versa, but it's more convenient to emit a row at
  14. * a time). Direct algorithms are also available, but they are much more
  15. * complex and seem not to be any faster when reduced to code.
  16. *
  17. * This implementation is based on an algorithm described in
  18. * C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
  19. * Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
  20. * Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
  21. * The primary algorithm described there uses 11 multiplies and 29 adds.
  22. * We use their alternate method with 12 multiplies and 32 adds.
  23. * The advantage of this method is that no data path contains more than one
  24. * multiplication; this allows a very simple and accurate implementation in
  25. * scaled fixed-point arithmetic, with a minimal number of shifts.
  26. */
  27. #define JPEG_INTERNALS
  28. #include "jinclude.h"
  29. #include "jpeglib.h"
  30. #include "jdct.h" /* Private declarations for DCT subsystem */
  31. #ifdef DCT_ISLOW_SUPPORTED
  32. /*
  33. * This module is specialized to the case DCTSIZE = 8.
  34. */
  35. #if DCTSIZE != 8
  36. Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
  37. #endif
  38. /*
  39. * The poop on this scaling stuff is as follows:
  40. *
  41. * Each 1-D IDCT step produces outputs which are a factor of sqrt(N)
  42. * larger than the true IDCT outputs. The final outputs are therefore
  43. * a factor of N larger than desired; since N=8 this can be cured by
  44. * a simple right shift at the end of the algorithm. The advantage of
  45. * this arrangement is that we save two multiplications per 1-D IDCT,
  46. * because the y0 and y4 inputs need not be divided by sqrt(N).
  47. *
  48. * We have to do addition and subtraction of the integer inputs, which
  49. * is no problem, and multiplication by fractional constants, which is
  50. * a problem to do in integer arithmetic. We multiply all the constants
  51. * by CONST_SCALE and convert them to integer constants (thus retaining
  52. * CONST_BITS bits of precision in the constants). After doing a
  53. * multiplication we have to divide the product by CONST_SCALE, with proper
  54. * rounding, to produce the correct output. This division can be done
  55. * cheaply as a right shift of CONST_BITS bits. We postpone shifting
  56. * as long as possible so that partial sums can be added together with
  57. * full fractional precision.
  58. *
  59. * The outputs of the first pass are scaled up by PASS1_BITS bits so that
  60. * they are represented to better-than-integral precision. These outputs
  61. * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
  62. * with the recommended scaling. (To scale up 12-bit sample data further, an
  63. * intermediate INT32 array would be needed.)
  64. *
  65. * To avoid overflow of the 32-bit intermediate results in pass 2, we must
  66. * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis
  67. * shows that the values given below are the most effective.
  68. */
  69. #if BITS_IN_JSAMPLE == 8
  70. #define CONST_BITS 13
  71. #define PASS1_BITS 2
  72. #else
  73. #define CONST_BITS 13
  74. #define PASS1_BITS 1 /* lose a little precision to avoid overflow */
  75. #endif
  76. /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
  77. * causing a lot of useless floating-point operations at run time.
  78. * To get around this we use the following pre-calculated constants.
  79. * If you change CONST_BITS you may want to add appropriate values.
  80. * (With a reasonable C compiler, you can just rely on the FIX() macro...)
  81. */
  82. #if CONST_BITS == 13
  83. #define FIX_0_298631336 ((INT32) 2446) /* FIX(0.298631336) */
  84. #define FIX_0_390180644 ((INT32) 3196) /* FIX(0.390180644) */
  85. #define FIX_0_541196100 ((INT32) 4433) /* FIX(0.541196100) */
  86. #define FIX_0_765366865 ((INT32) 6270) /* FIX(0.765366865) */
  87. #define FIX_0_899976223 ((INT32) 7373) /* FIX(0.899976223) */
  88. #define FIX_1_175875602 ((INT32) 9633) /* FIX(1.175875602) */
  89. #define FIX_1_501321110 ((INT32) 12299) /* FIX(1.501321110) */
  90. #define FIX_1_847759065 ((INT32) 15137) /* FIX(1.847759065) */
  91. #define FIX_1_961570560 ((INT32) 16069) /* FIX(1.961570560) */
  92. #define FIX_2_053119869 ((INT32) 16819) /* FIX(2.053119869) */
  93. #define FIX_2_562915447 ((INT32) 20995) /* FIX(2.562915447) */
  94. #define FIX_3_072711026 ((INT32) 25172) /* FIX(3.072711026) */
  95. #else
  96. #define FIX_0_298631336 FIX(0.298631336)
  97. #define FIX_0_390180644 FIX(0.390180644)
  98. #define FIX_0_541196100 FIX(0.541196100)
  99. #define FIX_0_765366865 FIX(0.765366865)
  100. #define FIX_0_899976223 FIX(0.899976223)
  101. #define FIX_1_175875602 FIX(1.175875602)
  102. #define FIX_1_501321110 FIX(1.501321110)
  103. #define FIX_1_847759065 FIX(1.847759065)
  104. #define FIX_1_961570560 FIX(1.961570560)
  105. #define FIX_2_053119869 FIX(2.053119869)
  106. #define FIX_2_562915447 FIX(2.562915447)
  107. #define FIX_3_072711026 FIX(3.072711026)
  108. #endif
  109. /* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
  110. * For 8-bit samples with the recommended scaling, all the variable
  111. * and constant values involved are no more than 16 bits wide, so a
  112. * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
  113. * For 12-bit samples, a full 32-bit multiplication will be needed.
  114. */
  115. #if BITS_IN_JSAMPLE == 8
  116. #define MULTIPLY(var,const) MULTIPLY16C16(var,const)
  117. #else
  118. #define MULTIPLY(var,const) ((var) * (const))
  119. #endif
  120. /* Dequantize a coefficient by multiplying it by the multiplier-table
  121. * entry; produce an int result. In this module, both inputs and result
  122. * are 16 bits or less, so either int or short multiply will work.
  123. */
  124. #define DEQUANTIZE(coef,quantval) (((ISLOW_MULT_TYPE) (coef)) * (quantval))
  125. /*
  126. * Perform dequantization and inverse DCT on one block of coefficients.
  127. */
  128. GLOBAL(void)
  129. jpeg_idct_islow (j_decompress_ptr cinfo, jpeg_component_info * compptr,
  130. JCOEFPTR coef_block,
  131. JSAMPARRAY output_buf, JDIMENSION output_col)
  132. {
  133. INT32 tmp0, tmp1, tmp2, tmp3;
  134. INT32 tmp10, tmp11, tmp12, tmp13;
  135. INT32 z1, z2, z3, z4, z5;
  136. JCOEFPTR inptr;
  137. ISLOW_MULT_TYPE * quantptr;
  138. int * wsptr;
  139. JSAMPROW outptr;
  140. JSAMPLE *range_limit = IDCT_range_limit(cinfo);
  141. int ctr;
  142. int workspace[DCTSIZE2]; /* buffers data between passes */
  143. SHIFT_TEMPS
  144. /* Pass 1: process columns from input, store into work array. */
  145. /* Note results are scaled up by sqrt(8) compared to a true IDCT; */
  146. /* furthermore, we scale the results by 2**PASS1_BITS. */
  147. inptr = coef_block;
  148. quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
  149. wsptr = workspace;
  150. for (ctr = DCTSIZE; ctr > 0; ctr--) {
  151. /* Due to quantization, we will usually find that many of the input
  152. * coefficients are zero, especially the AC terms. We can exploit this
  153. * by short-circuiting the IDCT calculation for any column in which all
  154. * the AC terms are zero. In that case each output is equal to the
  155. * DC coefficient (with scale factor as needed).
  156. * With typical images and quantization tables, half or more of the
  157. * column DCT calculations can be simplified this way.
  158. */
  159. if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
  160. inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
  161. inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
  162. inptr[DCTSIZE*7] == 0) {
  163. /* AC terms all zero */
  164. int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;
  165. wsptr[DCTSIZE*0] = dcval;
  166. wsptr[DCTSIZE*1] = dcval;
  167. wsptr[DCTSIZE*2] = dcval;
  168. wsptr[DCTSIZE*3] = dcval;
  169. wsptr[DCTSIZE*4] = dcval;
  170. wsptr[DCTSIZE*5] = dcval;
  171. wsptr[DCTSIZE*6] = dcval;
  172. wsptr[DCTSIZE*7] = dcval;
  173. inptr++; /* advance pointers to next column */
  174. quantptr++;
  175. wsptr++;
  176. continue;
  177. }
  178. /* Even part: reverse the even part of the forward DCT. */
  179. /* The rotator is sqrt(2)*c(-6). */
  180. z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
  181. z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
  182. z1 = MULTIPLY(z2 + z3, FIX_0_541196100);
  183. tmp2 = z1 + MULTIPLY(z3, - FIX_1_847759065);
  184. tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865);
  185. z2 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
  186. z3 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
  187. tmp0 = (z2 + z3) << CONST_BITS;
  188. tmp1 = (z2 - z3) << CONST_BITS;
  189. tmp10 = tmp0 + tmp3;
  190. tmp13 = tmp0 - tmp3;
  191. tmp11 = tmp1 + tmp2;
  192. tmp12 = tmp1 - tmp2;
  193. /* Odd part per figure 8; the matrix is unitary and hence its
  194. * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively.
  195. */
  196. tmp0 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
  197. tmp1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
  198. tmp2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
  199. tmp3 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
  200. z1 = tmp0 + tmp3;
  201. z2 = tmp1 + tmp2;
  202. z3 = tmp0 + tmp2;
  203. z4 = tmp1 + tmp3;
  204. z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
  205. tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
  206. tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
  207. tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
  208. tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
  209. z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
  210. z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
  211. z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
  212. z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
  213. z3 += z5;
  214. z4 += z5;
  215. tmp0 += z1 + z3;
  216. tmp1 += z2 + z4;
  217. tmp2 += z2 + z3;
  218. tmp3 += z1 + z4;
  219. /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
  220. wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp3, CONST_BITS-PASS1_BITS);
  221. wsptr[DCTSIZE*7] = (int) DESCALE(tmp10 - tmp3, CONST_BITS-PASS1_BITS);
  222. wsptr[DCTSIZE*1] = (int) DESCALE(tmp11 + tmp2, CONST_BITS-PASS1_BITS);
  223. wsptr[DCTSIZE*6] = (int) DESCALE(tmp11 - tmp2, CONST_BITS-PASS1_BITS);
  224. wsptr[DCTSIZE*2] = (int) DESCALE(tmp12 + tmp1, CONST_BITS-PASS1_BITS);
  225. wsptr[DCTSIZE*5] = (int) DESCALE(tmp12 - tmp1, CONST_BITS-PASS1_BITS);
  226. wsptr[DCTSIZE*3] = (int) DESCALE(tmp13 + tmp0, CONST_BITS-PASS1_BITS);
  227. wsptr[DCTSIZE*4] = (int) DESCALE(tmp13 - tmp0, CONST_BITS-PASS1_BITS);
  228. inptr++; /* advance pointers to next column */
  229. quantptr++;
  230. wsptr++;
  231. }
  232. /* Pass 2: process rows from work array, store into output array. */
  233. /* Note that we must descale the results by a factor of 8 == 2**3, */
  234. /* and also undo the PASS1_BITS scaling. */
  235. wsptr = workspace;
  236. for (ctr = 0; ctr < DCTSIZE; ctr++) {
  237. outptr = output_buf[ctr] + output_col;
  238. /* Rows of zeroes can be exploited in the same way as we did with columns.
  239. * However, the column calculation has created many nonzero AC terms, so
  240. * the simplification applies less often (typically 5% to 10% of the time).
  241. * On machines with very fast multiplication, it's possible that the
  242. * test takes more time than it's worth. In that case this section
  243. * may be commented out.
  244. */
  245. #ifndef NO_ZERO_ROW_TEST
  246. if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 &&
  247. wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
  248. /* AC terms all zero */
  249. JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3)
  250. & RANGE_MASK];
  251. outptr[0] = dcval;
  252. outptr[1] = dcval;
  253. outptr[2] = dcval;
  254. outptr[3] = dcval;
  255. outptr[4] = dcval;
  256. outptr[5] = dcval;
  257. outptr[6] = dcval;
  258. outptr[7] = dcval;
  259. wsptr += DCTSIZE; /* advance pointer to next row */
  260. continue;
  261. }
  262. #endif
  263. /* Even part: reverse the even part of the forward DCT. */
  264. /* The rotator is sqrt(2)*c(-6). */
  265. z2 = (INT32) wsptr[2];
  266. z3 = (INT32) wsptr[6];
  267. z1 = MULTIPLY(z2 + z3, FIX_0_541196100);
  268. tmp2 = z1 + MULTIPLY(z3, - FIX_1_847759065);
  269. tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865);
  270. tmp0 = ((INT32) wsptr[0] + (INT32) wsptr[4]) << CONST_BITS;
  271. tmp1 = ((INT32) wsptr[0] - (INT32) wsptr[4]) << CONST_BITS;
  272. tmp10 = tmp0 + tmp3;
  273. tmp13 = tmp0 - tmp3;
  274. tmp11 = tmp1 + tmp2;
  275. tmp12 = tmp1 - tmp2;
  276. /* Odd part per figure 8; the matrix is unitary and hence its
  277. * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively.
  278. */
  279. tmp0 = (INT32) wsptr[7];
  280. tmp1 = (INT32) wsptr[5];
  281. tmp2 = (INT32) wsptr[3];
  282. tmp3 = (INT32) wsptr[1];
  283. z1 = tmp0 + tmp3;
  284. z2 = tmp1 + tmp2;
  285. z3 = tmp0 + tmp2;
  286. z4 = tmp1 + tmp3;
  287. z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
  288. tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
  289. tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
  290. tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
  291. tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
  292. z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
  293. z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
  294. z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
  295. z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
  296. z3 += z5;
  297. z4 += z5;
  298. tmp0 += z1 + z3;
  299. tmp1 += z2 + z4;
  300. tmp2 += z2 + z3;
  301. tmp3 += z1 + z4;
  302. /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
  303. outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp3,
  304. CONST_BITS+PASS1_BITS+3)
  305. & RANGE_MASK];
  306. outptr[7] = range_limit[(int) DESCALE(tmp10 - tmp3,
  307. CONST_BITS+PASS1_BITS+3)
  308. & RANGE_MASK];
  309. outptr[1] = range_limit[(int) DESCALE(tmp11 + tmp2,
  310. CONST_BITS+PASS1_BITS+3)
  311. & RANGE_MASK];
  312. outptr[6] = range_limit[(int) DESCALE(tmp11 - tmp2,
  313. CONST_BITS+PASS1_BITS+3)
  314. & RANGE_MASK];
  315. outptr[2] = range_limit[(int) DESCALE(tmp12 + tmp1,
  316. CONST_BITS+PASS1_BITS+3)
  317. & RANGE_MASK];
  318. outptr[5] = range_limit[(int) DESCALE(tmp12 - tmp1,
  319. CONST_BITS+PASS1_BITS+3)
  320. & RANGE_MASK];
  321. outptr[3] = range_limit[(int) DESCALE(tmp13 + tmp0,
  322. CONST_BITS+PASS1_BITS+3)
  323. & RANGE_MASK];
  324. outptr[4] = range_limit[(int) DESCALE(tmp13 - tmp0,
  325. CONST_BITS+PASS1_BITS+3)
  326. & RANGE_MASK];
  327. wsptr += DCTSIZE; /* advance pointer to next row */
  328. }
  329. }
  330. #endif /* DCT_ISLOW_SUPPORTED */