Audio plugin host https://kx.studio/carla
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

jfdctfst.c 7.6KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224
  1. /*
  2. * jfdctfst.c
  3. *
  4. * Copyright (C) 1994-1996, Thomas G. Lane.
  5. * This file is part of the Independent JPEG Group's software.
  6. * For conditions of distribution and use, see the accompanying README file.
  7. *
  8. * This file contains a fast, not so accurate integer implementation of the
  9. * forward DCT (Discrete Cosine Transform).
  10. *
  11. * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
  12. * on each column. Direct algorithms are also available, but they are
  13. * much more complex and seem not to be any faster when reduced to code.
  14. *
  15. * This implementation is based on Arai, Agui, and Nakajima's algorithm for
  16. * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
  17. * Japanese, but the algorithm is described in the Pennebaker & Mitchell
  18. * JPEG textbook (see REFERENCES section in file README). The following code
  19. * is based directly on figure 4-8 in P&M.
  20. * While an 8-point DCT cannot be done in less than 11 multiplies, it is
  21. * possible to arrange the computation so that many of the multiplies are
  22. * simple scalings of the final outputs. These multiplies can then be
  23. * folded into the multiplications or divisions by the JPEG quantization
  24. * table entries. The AA&N method leaves only 5 multiplies and 29 adds
  25. * to be done in the DCT itself.
  26. * The primary disadvantage of this method is that with fixed-point math,
  27. * accuracy is lost due to imprecise representation of the scaled
  28. * quantization values. The smaller the quantization table entry, the less
  29. * precise the scaled value, so this implementation does worse with high-
  30. * quality-setting files than with low-quality ones.
  31. */
  32. #define JPEG_INTERNALS
  33. #include "jinclude.h"
  34. #include "jpeglib.h"
  35. #include "jdct.h" /* Private declarations for DCT subsystem */
  36. #ifdef DCT_IFAST_SUPPORTED
  37. /*
  38. * This module is specialized to the case DCTSIZE = 8.
  39. */
  40. #if DCTSIZE != 8
  41. Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
  42. #endif
  43. /* Scaling decisions are generally the same as in the LL&M algorithm;
  44. * see jfdctint.c for more details. However, we choose to descale
  45. * (right shift) multiplication products as soon as they are formed,
  46. * rather than carrying additional fractional bits into subsequent additions.
  47. * This compromises accuracy slightly, but it lets us save a few shifts.
  48. * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples)
  49. * everywhere except in the multiplications proper; this saves a good deal
  50. * of work on 16-bit-int machines.
  51. *
  52. * Again to save a few shifts, the intermediate results between pass 1 and
  53. * pass 2 are not upscaled, but are represented only to integral precision.
  54. *
  55. * A final compromise is to represent the multiplicative constants to only
  56. * 8 fractional bits, rather than 13. This saves some shifting work on some
  57. * machines, and may also reduce the cost of multiplication (since there
  58. * are fewer one-bits in the constants).
  59. */
  60. #define CONST_BITS 8
  61. /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
  62. * causing a lot of useless floating-point operations at run time.
  63. * To get around this we use the following pre-calculated constants.
  64. * If you change CONST_BITS you may want to add appropriate values.
  65. * (With a reasonable C compiler, you can just rely on the FIX() macro...)
  66. */
  67. #if CONST_BITS == 8
  68. #define FIX_0_382683433 ((INT32) 98) /* FIX(0.382683433) */
  69. #define FIX_0_541196100 ((INT32) 139) /* FIX(0.541196100) */
  70. #define FIX_0_707106781 ((INT32) 181) /* FIX(0.707106781) */
  71. #define FIX_1_306562965 ((INT32) 334) /* FIX(1.306562965) */
  72. #else
  73. #define FIX_0_382683433 FIX(0.382683433)
  74. #define FIX_0_541196100 FIX(0.541196100)
  75. #define FIX_0_707106781 FIX(0.707106781)
  76. #define FIX_1_306562965 FIX(1.306562965)
  77. #endif
  78. /* We can gain a little more speed, with a further compromise in accuracy,
  79. * by omitting the addition in a descaling shift. This yields an incorrectly
  80. * rounded result half the time...
  81. */
  82. #ifndef USE_ACCURATE_ROUNDING
  83. #undef DESCALE
  84. #define DESCALE(x,n) RIGHT_SHIFT(x, n)
  85. #endif
  86. /* Multiply a DCTELEM variable by an INT32 constant, and immediately
  87. * descale to yield a DCTELEM result.
  88. */
  89. #define MULTIPLY(var,const) ((DCTELEM) DESCALE((var) * (const), CONST_BITS))
  90. /*
  91. * Perform the forward DCT on one block of samples.
  92. */
  93. GLOBAL(void)
  94. jpeg_fdct_ifast (DCTELEM * data)
  95. {
  96. DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
  97. DCTELEM tmp10, tmp11, tmp12, tmp13;
  98. DCTELEM z1, z2, z3, z4, z5, z11, z13;
  99. DCTELEM *dataptr;
  100. int ctr;
  101. SHIFT_TEMPS
  102. /* Pass 1: process rows. */
  103. dataptr = data;
  104. for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
  105. tmp0 = dataptr[0] + dataptr[7];
  106. tmp7 = dataptr[0] - dataptr[7];
  107. tmp1 = dataptr[1] + dataptr[6];
  108. tmp6 = dataptr[1] - dataptr[6];
  109. tmp2 = dataptr[2] + dataptr[5];
  110. tmp5 = dataptr[2] - dataptr[5];
  111. tmp3 = dataptr[3] + dataptr[4];
  112. tmp4 = dataptr[3] - dataptr[4];
  113. /* Even part */
  114. tmp10 = tmp0 + tmp3; /* phase 2 */
  115. tmp13 = tmp0 - tmp3;
  116. tmp11 = tmp1 + tmp2;
  117. tmp12 = tmp1 - tmp2;
  118. dataptr[0] = tmp10 + tmp11; /* phase 3 */
  119. dataptr[4] = tmp10 - tmp11;
  120. z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */
  121. dataptr[2] = tmp13 + z1; /* phase 5 */
  122. dataptr[6] = tmp13 - z1;
  123. /* Odd part */
  124. tmp10 = tmp4 + tmp5; /* phase 2 */
  125. tmp11 = tmp5 + tmp6;
  126. tmp12 = tmp6 + tmp7;
  127. /* The rotator is modified from fig 4-8 to avoid extra negations. */
  128. z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */
  129. z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */
  130. z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */
  131. z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */
  132. z11 = tmp7 + z3; /* phase 5 */
  133. z13 = tmp7 - z3;
  134. dataptr[5] = z13 + z2; /* phase 6 */
  135. dataptr[3] = z13 - z2;
  136. dataptr[1] = z11 + z4;
  137. dataptr[7] = z11 - z4;
  138. dataptr += DCTSIZE; /* advance pointer to next row */
  139. }
  140. /* Pass 2: process columns. */
  141. dataptr = data;
  142. for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
  143. tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
  144. tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
  145. tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
  146. tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
  147. tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
  148. tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
  149. tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
  150. tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
  151. /* Even part */
  152. tmp10 = tmp0 + tmp3; /* phase 2 */
  153. tmp13 = tmp0 - tmp3;
  154. tmp11 = tmp1 + tmp2;
  155. tmp12 = tmp1 - tmp2;
  156. dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */
  157. dataptr[DCTSIZE*4] = tmp10 - tmp11;
  158. z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */
  159. dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */
  160. dataptr[DCTSIZE*6] = tmp13 - z1;
  161. /* Odd part */
  162. tmp10 = tmp4 + tmp5; /* phase 2 */
  163. tmp11 = tmp5 + tmp6;
  164. tmp12 = tmp6 + tmp7;
  165. /* The rotator is modified from fig 4-8 to avoid extra negations. */
  166. z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */
  167. z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */
  168. z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */
  169. z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */
  170. z11 = tmp7 + z3; /* phase 5 */
  171. z13 = tmp7 - z3;
  172. dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */
  173. dataptr[DCTSIZE*3] = z13 - z2;
  174. dataptr[DCTSIZE*1] = z11 + z4;
  175. dataptr[DCTSIZE*7] = z11 - z4;
  176. dataptr++; /* advance pointer to next column */
  177. }
  178. }
  179. #endif /* DCT_IFAST_SUPPORTED */