|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438 |
- /*
- ==============================================================================
-
- This file is part of the JUCE library.
- Copyright (c) 2022 - Raw Material Software Limited
-
- JUCE is an open source library subject to commercial or open-source
- licensing.
-
- By using JUCE, you agree to the terms of both the JUCE 7 End-User License
- Agreement and JUCE Privacy Policy.
-
- End User License Agreement: www.juce.com/juce-7-licence
- Privacy Policy: www.juce.com/juce-privacy-policy
-
- Or: You may also use this code under the terms of the GPL v3 (see
- www.gnu.org/licenses).
-
- JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
- EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
- DISCLAIMED.
-
- ==============================================================================
- */
-
- namespace juce
- {
-
- Displays::Displays (Desktop& desktop)
- {
- init (desktop);
- }
-
- void Displays::init (Desktop& desktop)
- {
- findDisplays (desktop.getGlobalScaleFactor());
- }
-
- const Displays::Display* Displays::getDisplayForRect (Rectangle<int> rect, bool isPhysical) const noexcept
- {
- int maxArea = -1;
- const Display* foundDisplay = nullptr;
-
- for (auto& display : displays)
- {
- auto displayArea = display.totalArea;
-
- if (isPhysical)
- displayArea = (displayArea.withZeroOrigin() * display.scale) + display.topLeftPhysical;
-
- displayArea = displayArea.getIntersection (rect);
- auto area = displayArea.getWidth() * displayArea.getHeight();
-
- if (area >= maxArea)
- {
- maxArea = area;
- foundDisplay = &display;
- }
- }
-
- return foundDisplay;
- }
-
- const Displays::Display* Displays::getDisplayForPoint (Point<int> point, bool isPhysical) const noexcept
- {
- auto minDistance = std::numeric_limits<int>::max();
- const Display* foundDisplay = nullptr;
-
- for (auto& display : displays)
- {
- auto displayArea = display.totalArea;
-
- if (isPhysical)
- displayArea = (displayArea.withZeroOrigin() * display.scale) + display.topLeftPhysical;
-
- if (displayArea.contains (point))
- return &display;
-
- auto distance = displayArea.getCentre().getDistanceFrom (point);
-
- if (distance <= minDistance)
- {
- minDistance = distance;
- foundDisplay = &display;
- }
- }
-
- return foundDisplay;
- }
-
- Rectangle<int> Displays::physicalToLogical (Rectangle<int> rect, const Display* useScaleFactorOfDisplay) const noexcept
- {
- return physicalToLogical (rect.toFloat(), useScaleFactorOfDisplay).toNearestInt();
- }
-
- Rectangle<float> Displays::physicalToLogical (Rectangle<float> rect, const Display* useScaleFactorOfDisplay) const noexcept
- {
- const auto* display = useScaleFactorOfDisplay != nullptr ? useScaleFactorOfDisplay
- : getDisplayForRect (rect.toNearestInt(), true);
-
- if (display == nullptr)
- return rect;
-
- auto globalScale = Desktop::getInstance().getGlobalScaleFactor();
-
- return ((rect - display->topLeftPhysical.toFloat()) / (display->scale / globalScale))
- + (display->totalArea.getTopLeft().toFloat() * globalScale);
- }
-
- Rectangle<int> Displays::logicalToPhysical (Rectangle<int> rect, const Display* useScaleFactorOfDisplay) const noexcept
- {
- return logicalToPhysical (rect.toFloat(), useScaleFactorOfDisplay).toNearestInt();
- }
-
- Rectangle<float> Displays::logicalToPhysical (Rectangle<float> rect, const Display* useScaleFactorOfDisplay) const noexcept
- {
- const auto* display = useScaleFactorOfDisplay != nullptr ? useScaleFactorOfDisplay
- : getDisplayForRect (rect.toNearestInt(), false);
-
- if (display == nullptr)
- return rect;
-
- auto globalScale = Desktop::getInstance().getGlobalScaleFactor();
-
- return ((rect.toFloat() - (display->totalArea.getTopLeft().toFloat() * globalScale)) * (display->scale / globalScale))
- + display->topLeftPhysical.toFloat();
- }
-
- template <typename ValueType>
- Point<ValueType> Displays::physicalToLogical (Point<ValueType> point, const Display* useScaleFactorOfDisplay) const noexcept
- {
- const auto* display = useScaleFactorOfDisplay != nullptr ? useScaleFactorOfDisplay
- : getDisplayForPoint (point.roundToInt(), true);
-
- if (display == nullptr)
- return point;
-
- auto globalScale = Desktop::getInstance().getGlobalScaleFactor();
-
- Point<ValueType> logicalTopLeft (static_cast<ValueType> (display->totalArea.getX()), static_cast<ValueType> (display->totalArea.getY()));
- Point<ValueType> physicalTopLeft (static_cast<ValueType> (display->topLeftPhysical.getX()), static_cast<ValueType> (display->topLeftPhysical.getY()));
-
- return ((point - physicalTopLeft) / (display->scale / globalScale)) + (logicalTopLeft * globalScale);
- }
-
- template <typename ValueType>
- Point<ValueType> Displays::logicalToPhysical (Point<ValueType> point, const Display* useScaleFactorOfDisplay) const noexcept
- {
- const auto* display = useScaleFactorOfDisplay != nullptr ? useScaleFactorOfDisplay
- : getDisplayForPoint (point.roundToInt(), false);
-
- if (display == nullptr)
- return point;
-
- auto globalScale = Desktop::getInstance().getGlobalScaleFactor();
-
- Point<ValueType> logicalTopLeft (static_cast<ValueType> (display->totalArea.getX()), static_cast<ValueType> (display->totalArea.getY()));
- Point<ValueType> physicalTopLeft (static_cast<ValueType> (display->topLeftPhysical.getX()), static_cast<ValueType> (display->topLeftPhysical.getY()));
-
- return ((point - (logicalTopLeft * globalScale)) * (display->scale / globalScale)) + physicalTopLeft;
- }
-
- const Displays::Display* Displays::getPrimaryDisplay() const noexcept
- {
- JUCE_ASSERT_MESSAGE_MANAGER_IS_LOCKED
-
- for (auto& d : displays)
- if (d.isMain)
- return &d;
-
- return nullptr;
- }
-
- RectangleList<int> Displays::getRectangleList (bool userAreasOnly) const
- {
- JUCE_ASSERT_MESSAGE_MANAGER_IS_LOCKED
- RectangleList<int> rl;
-
- for (auto& d : displays)
- rl.addWithoutMerging (userAreasOnly ? d.userArea : d.totalArea);
-
- return rl;
- }
-
- Rectangle<int> Displays::getTotalBounds (bool userAreasOnly) const
- {
- return getRectangleList (userAreasOnly).getBounds();
- }
-
- void Displays::refresh()
- {
- Array<Display> oldDisplays;
- oldDisplays.swapWith (displays);
-
- init (Desktop::getInstance());
-
- if (oldDisplays != displays)
- {
- for (auto i = ComponentPeer::getNumPeers(); --i >= 0;)
- if (auto* peer = ComponentPeer::getPeer (i))
- peer->handleScreenSizeChange();
- }
- }
-
- bool operator== (const Displays::Display& d1, const Displays::Display& d2) noexcept;
- bool operator== (const Displays::Display& d1, const Displays::Display& d2) noexcept
- {
- return d1.isMain == d2.isMain
- && d1.totalArea == d2.totalArea
- && d1.userArea == d2.userArea
- && d1.topLeftPhysical == d2.topLeftPhysical
- && d1.scale == d2.scale
- && d1.dpi == d2.dpi;
- }
-
- bool operator!= (const Displays::Display& d1, const Displays::Display& d2) noexcept;
- bool operator!= (const Displays::Display& d1, const Displays::Display& d2) noexcept { return ! (d1 == d2); }
-
- //==============================================================================
- // These methods are used for converting the totalArea and userArea Rectangles in Display from physical to logical
- // pixels. We do this by constructing a graph of connected displays where the root node has position (0, 0); this can be
- // safely converted to logical pixels using its scale factor and we can then traverse the graph and work out the logical pixels
- // for all the other connected displays. We need to do this as the logical bounds of a display depend not only on its scale
- // factor but also the scale factor of the displays connected to it.
-
- /**
- Represents a node in our graph of displays.
- */
- struct DisplayNode
- {
- /** The Display object that this represents. */
- Displays::Display* display;
-
- /** True if this represents the 'root' display with position (0, 0). */
- bool isRoot = false;
-
- /** The parent node of this node in our display graph. This will have a correct logicalArea. */
- DisplayNode* parent = nullptr;
-
- /** The logical area to be calculated. This will be valid after processDisplay() has
- been called on this node.
- */
- Rectangle<double> logicalArea;
- };
-
- /** Recursive - will calculate and set the logicalArea member of current. */
- static void processDisplay (DisplayNode* currentNode, Array<DisplayNode>& allNodes)
- {
- const auto physicalArea = currentNode->display->totalArea.toDouble();
- const auto scale = currentNode->display->scale;
-
- if (! currentNode->isRoot)
- {
- const auto logicalWidth = physicalArea.getWidth() / scale;
- const auto logicalHeight = physicalArea.getHeight() / scale;
-
- const auto physicalParentArea = currentNode->parent->display->totalArea.toDouble();
- const auto logicalParentArea = currentNode->parent->logicalArea; // logical area of parent has already been calculated
- const auto parentScale = currentNode->parent->display->scale;
-
- Rectangle<double> logicalArea (0.0, 0.0, logicalWidth, logicalHeight);
-
- if (physicalArea.getRight() == physicalParentArea.getX()) logicalArea.setPosition ({ logicalParentArea.getX() - logicalWidth, physicalArea.getY() / parentScale }); // on left
- else if (physicalArea.getX() == physicalParentArea.getRight()) logicalArea.setPosition ({ logicalParentArea.getRight(), physicalArea.getY() / parentScale }); // on right
- else if (physicalArea.getBottom() == physicalParentArea.getY()) logicalArea.setPosition ({ physicalArea.getX() / parentScale, logicalParentArea.getY() - logicalHeight }); // on top
- else if (physicalArea.getY() == physicalParentArea.getBottom()) logicalArea.setPosition ({ physicalArea.getX() / parentScale, logicalParentArea.getBottom() }); // on bottom
- else jassertfalse;
-
- currentNode->logicalArea = logicalArea;
- }
- else
- {
- // If currentNode is the root (position (0, 0)) then we can just scale the physical area
- currentNode->logicalArea = physicalArea / scale;
- currentNode->parent = currentNode;
- }
-
- // Find child nodes
- Array<DisplayNode*> children;
- for (auto& node : allNodes)
- {
- // Already calculated
- if (node.parent != nullptr)
- continue;
-
- const auto otherPhysicalArea = node.display->totalArea.toDouble();
-
- // If the displays are touching on any side
- if (otherPhysicalArea.getX() == physicalArea.getRight() || otherPhysicalArea.getRight() == physicalArea.getX()
- || otherPhysicalArea.getY() == physicalArea.getBottom() || otherPhysicalArea.getBottom() == physicalArea.getY())
- {
- node.parent = currentNode;
- children.add (&node);
- }
- }
-
- // Recursively process all child nodes
- for (auto child : children)
- processDisplay (child, allNodes);
- }
-
- /** This is called when the displays Array has been filled out with the info for all connected displays and the
- totalArea and userArea Rectangles need to be converted from physical to logical coordinates.
- */
- void Displays::updateToLogical()
- {
- if (displays.size() == 1)
- {
- auto& display = displays.getReference (0);
-
- display.totalArea = (display.totalArea.toDouble() / display.scale).toNearestInt();
- display.userArea = (display.userArea.toDouble() / display.scale).toNearestInt();
-
- return;
- }
-
- Array<DisplayNode> displayNodes;
-
- for (auto& d : displays)
- {
- DisplayNode node;
-
- node.display = &d;
-
- if (d.totalArea.getTopLeft() == Point<int>())
- node.isRoot = true;
-
- displayNodes.add (node);
- }
-
- auto* root = [&displayNodes]() -> DisplayNode*
- {
- for (auto& node : displayNodes)
- if (node.isRoot)
- return &node;
-
- auto minDistance = std::numeric_limits<int>::max();
- DisplayNode* retVal = nullptr;
-
- for (auto& node : displayNodes)
- {
- auto distance = node.display->totalArea.getTopLeft().getDistanceFrom ({});
-
- if (distance < minDistance)
- {
- minDistance = distance;
- retVal = &node;
- }
- }
-
- if (retVal != nullptr)
- retVal->isRoot = true;
-
- return retVal;
- }();
-
- // Must have a root node!
- jassert (root != nullptr);
-
- // Recursively traverse the display graph from the root and work out logical bounds
- processDisplay (root, displayNodes);
-
- for (auto& node : displayNodes)
- {
- // All of the nodes should have a parent
- jassert (node.parent != nullptr);
-
- auto relativeUserArea = (node.display->userArea.toDouble() - node.display->totalArea.toDouble().getTopLeft()) / node.display->scale;
-
- // Now set Display::totalArea and ::userArea using the logical area that we have calculated
- node.display->topLeftPhysical = node.display->totalArea.getTopLeft();
- node.display->totalArea = node.logicalArea.toNearestInt();
- node.display->userArea = (relativeUserArea + node.logicalArea.getTopLeft()).toNearestInt();
- }
- }
-
- #ifndef DOXYGEN
- // explicit template instantiations
- template Point<int> Displays::physicalToLogical (Point<int>, const Display*) const noexcept;
- template Point<float> Displays::physicalToLogical (Point<float>, const Display*) const noexcept;
-
- template Point<int> Displays::logicalToPhysical (Point<int>, const Display*) const noexcept;
- template Point<float> Displays::logicalToPhysical (Point<float>, const Display*) const noexcept;
- #endif
-
- //==============================================================================
- // Deprecated methods
- const Displays::Display& Displays::getDisplayContaining (Point<int> position) const noexcept
- {
- JUCE_ASSERT_MESSAGE_MANAGER_IS_LOCKED
- const auto* best = &displays.getReference (0);
- auto bestDistance = std::numeric_limits<int>::max();
-
- for (auto& d : displays)
- {
- if (d.totalArea.contains (position))
- {
- best = &d;
- break;
- }
-
- auto distance = d.totalArea.getCentre().getDistanceFrom (position);
-
- if (distance < bestDistance)
- {
- bestDistance = distance;
- best = &d;
- }
- }
-
- return *best;
- }
-
- const Displays::Display& Displays::findDisplayForRect (Rectangle<int> rect, bool isPhysical) const noexcept
- {
- if (auto* display = getDisplayForRect (rect, isPhysical))
- return *display;
-
- return emptyDisplay;
- }
-
- const Displays::Display& Displays::findDisplayForPoint (Point<int> point, bool isPhysical) const noexcept
- {
- if (auto* display = getDisplayForPoint (point, isPhysical))
- return *display;
-
- return emptyDisplay;
- }
-
- const Displays::Display& Displays::getMainDisplay() const noexcept
- {
- if (auto* display = getPrimaryDisplay())
- return *display;
-
- return emptyDisplay;
- }
-
- } // namespace juce
|