|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143 |
- /*
- ==============================================================================
-
- This file is part of the JUCE library.
- Copyright (c) 2022 - Raw Material Software Limited
-
- JUCE is an open source library subject to commercial or open-source
- licensing.
-
- By using JUCE, you agree to the terms of both the JUCE 7 End-User License
- Agreement and JUCE Privacy Policy.
-
- End User License Agreement: www.juce.com/juce-7-licence
- Privacy Policy: www.juce.com/juce-privacy-policy
-
- Or: You may also use this code under the terms of the GPL v3 (see
- www.gnu.org/licenses).
-
- JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
- EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
- DISCLAIMED.
-
- ==============================================================================
- */
-
- namespace juce
- {
- namespace dsp
- {
-
- double SpecialFunctions::besselI0 (double x) noexcept
- {
- auto ax = std::abs (x);
-
- if (ax < 3.75)
- {
- auto y = x / 3.75;
- y *= y;
-
- return 1.0 + y * (3.5156229 + y * (3.0899424 + y * (1.2067492
- + y * (0.2659732 + y * (0.360768e-1 + y * 0.45813e-2)))));
- }
-
- auto y = 3.75 / ax;
-
- return (std::exp (ax) / std::sqrt (ax))
- * (0.39894228 + y * (0.1328592e-1 + y * (0.225319e-2 + y * (-0.157565e-2 + y * (0.916281e-2
- + y * (-0.2057706e-1 + y * (0.2635537e-1 + y * (-0.1647633e-1 + y * 0.392377e-2))))))));
- }
-
- void SpecialFunctions::ellipticIntegralK (double k, double& K, double& Kp) noexcept
- {
- constexpr int M = 4;
-
- K = MathConstants<double>::halfPi;
- auto lastK = k;
-
- for (int i = 0; i < M; ++i)
- {
- lastK = std::pow (lastK / (1 + std::sqrt (1 - std::pow (lastK, 2.0))), 2.0);
- K *= 1 + lastK;
- }
-
- Kp = MathConstants<double>::halfPi;
- auto last = std::sqrt (1 - k * k);
-
- for (int i = 0; i < M; ++i)
- {
- last = std::pow (last / (1.0 + std::sqrt (1.0 - std::pow (last, 2.0))), 2.0);
- Kp *= 1 + last;
- }
- }
-
- Complex<double> SpecialFunctions::cde (Complex<double> u, double k) noexcept
- {
- constexpr int M = 4;
-
- double ke[M + 1];
- double* kei = ke;
- *kei = k;
-
- for (int i = 0; i < M; ++i)
- {
- auto next = std::pow (*kei / (1.0 + std::sqrt (1.0 - std::pow (*kei, 2.0))), 2.0);
- *++kei = next;
- }
-
- // NB: the spurious cast to double here is a workaround for a very odd link-time failure
- std::complex<double> last = std::cos (u * (double) MathConstants<double>::halfPi);
-
- for (int i = M - 1; i >= 0; --i)
- last = (1.0 + ke[i + 1]) / (1.0 / last + ke[i + 1] * last);
-
- return last;
- }
-
- Complex<double> SpecialFunctions::sne (Complex<double> u, double k) noexcept
- {
- constexpr int M = 4;
-
- double ke[M + 1];
- double* kei = ke;
- *kei = k;
-
- for (int i = 0; i < M; ++i)
- {
- auto next = std::pow (*kei / (1 + std::sqrt (1 - std::pow (*kei, 2.0))), 2.0);
- *++kei = next;
- }
-
- // NB: the spurious cast to double here is a workaround for a very odd link-time failure
- std::complex<double> last = std::sin (u * (double) MathConstants<double>::halfPi);
-
- for (int i = M - 1; i >= 0; --i)
- last = (1.0 + ke[i + 1]) / (1.0 / last + ke[i + 1] * last);
-
- return last;
- }
-
- Complex<double> SpecialFunctions::asne (Complex<double> w, double k) noexcept
- {
- constexpr int M = 4;
-
- double ke[M + 1];
- double* kei = ke;
- *kei = k;
-
- for (int i = 0; i < M; ++i)
- {
- auto next = std::pow (*kei / (1.0 + std::sqrt (1.0 - std::pow (*kei, 2.0))), 2.0);
- *++kei = next;
- }
-
- std::complex<double> last = w;
-
- for (int i = 1; i <= M; ++i)
- last = 2.0 * last / ((1.0 + ke[i]) * (1.0 + std::sqrt (1.0 - std::pow (ke[i - 1] * last, 2.0))));
-
- return 2.0 / MathConstants<double>::pi * std::asin (last);
- }
-
- } // namespace dsp
- } // namespace juce
|