Audio plugin host https://kx.studio/carla
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

jidctfst.c 13KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368
  1. /*
  2. * jidctfst.c
  3. *
  4. * Copyright (C) 1994-1998, Thomas G. Lane.
  5. * This file is part of the Independent JPEG Group's software.
  6. * For conditions of distribution and use, see the accompanying README file.
  7. *
  8. * This file contains a fast, not so accurate integer implementation of the
  9. * inverse DCT (Discrete Cosine Transform). In the IJG code, this routine
  10. * must also perform dequantization of the input coefficients.
  11. *
  12. * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
  13. * on each row (or vice versa, but it's more convenient to emit a row at
  14. * a time). Direct algorithms are also available, but they are much more
  15. * complex and seem not to be any faster when reduced to code.
  16. *
  17. * This implementation is based on Arai, Agui, and Nakajima's algorithm for
  18. * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
  19. * Japanese, but the algorithm is described in the Pennebaker & Mitchell
  20. * JPEG textbook (see REFERENCES section in file README). The following code
  21. * is based directly on figure 4-8 in P&M.
  22. * While an 8-point DCT cannot be done in less than 11 multiplies, it is
  23. * possible to arrange the computation so that many of the multiplies are
  24. * simple scalings of the final outputs. These multiplies can then be
  25. * folded into the multiplications or divisions by the JPEG quantization
  26. * table entries. The AA&N method leaves only 5 multiplies and 29 adds
  27. * to be done in the DCT itself.
  28. * The primary disadvantage of this method is that with fixed-point math,
  29. * accuracy is lost due to imprecise representation of the scaled
  30. * quantization values. The smaller the quantization table entry, the less
  31. * precise the scaled value, so this implementation does worse with high-
  32. * quality-setting files than with low-quality ones.
  33. */
  34. #define JPEG_INTERNALS
  35. #include "jinclude.h"
  36. #include "jpeglib.h"
  37. #include "jdct.h" /* Private declarations for DCT subsystem */
  38. #ifdef DCT_IFAST_SUPPORTED
  39. /*
  40. * This module is specialized to the case DCTSIZE = 8.
  41. */
  42. #if DCTSIZE != 8
  43. Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
  44. #endif
  45. /* Scaling decisions are generally the same as in the LL&M algorithm;
  46. * see jidctint.c for more details. However, we choose to descale
  47. * (right shift) multiplication products as soon as they are formed,
  48. * rather than carrying additional fractional bits into subsequent additions.
  49. * This compromises accuracy slightly, but it lets us save a few shifts.
  50. * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples)
  51. * everywhere except in the multiplications proper; this saves a good deal
  52. * of work on 16-bit-int machines.
  53. *
  54. * The dequantized coefficients are not integers because the AA&N scaling
  55. * factors have been incorporated. We represent them scaled up by PASS1_BITS,
  56. * so that the first and second IDCT rounds have the same input scaling.
  57. * For 8-bit JSAMPLEs, we choose IFAST_SCALE_BITS = PASS1_BITS so as to
  58. * avoid a descaling shift; this compromises accuracy rather drastically
  59. * for small quantization table entries, but it saves a lot of shifts.
  60. * For 12-bit JSAMPLEs, there's no hope of using 16x16 multiplies anyway,
  61. * so we use a much larger scaling factor to preserve accuracy.
  62. *
  63. * A final compromise is to represent the multiplicative constants to only
  64. * 8 fractional bits, rather than 13. This saves some shifting work on some
  65. * machines, and may also reduce the cost of multiplication (since there
  66. * are fewer one-bits in the constants).
  67. */
  68. #if BITS_IN_JSAMPLE == 8
  69. #define CONST_BITS 8
  70. #define PASS1_BITS 2
  71. #else
  72. #define CONST_BITS 8
  73. #define PASS1_BITS 1 /* lose a little precision to avoid overflow */
  74. #endif
  75. /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
  76. * causing a lot of useless floating-point operations at run time.
  77. * To get around this we use the following pre-calculated constants.
  78. * If you change CONST_BITS you may want to add appropriate values.
  79. * (With a reasonable C compiler, you can just rely on the FIX() macro...)
  80. */
  81. #if CONST_BITS == 8
  82. #define FIX_1_082392200 ((INT32) 277) /* FIX(1.082392200) */
  83. #define FIX_1_414213562 ((INT32) 362) /* FIX(1.414213562) */
  84. #define FIX_1_847759065 ((INT32) 473) /* FIX(1.847759065) */
  85. #define FIX_2_613125930 ((INT32) 669) /* FIX(2.613125930) */
  86. #else
  87. #define FIX_1_082392200 FIX(1.082392200)
  88. #define FIX_1_414213562 FIX(1.414213562)
  89. #define FIX_1_847759065 FIX(1.847759065)
  90. #define FIX_2_613125930 FIX(2.613125930)
  91. #endif
  92. /* We can gain a little more speed, with a further compromise in accuracy,
  93. * by omitting the addition in a descaling shift. This yields an incorrectly
  94. * rounded result half the time...
  95. */
  96. #ifndef USE_ACCURATE_ROUNDING
  97. #undef DESCALE
  98. #define DESCALE(x,n) RIGHT_SHIFT(x, n)
  99. #endif
  100. /* Multiply a DCTELEM variable by an INT32 constant, and immediately
  101. * descale to yield a DCTELEM result.
  102. */
  103. #define MULTIPLY(var,const) ((DCTELEM) DESCALE((var) * (const), CONST_BITS))
  104. /* Dequantize a coefficient by multiplying it by the multiplier-table
  105. * entry; produce a DCTELEM result. For 8-bit data a 16x16->16
  106. * multiplication will do. For 12-bit data, the multiplier table is
  107. * declared INT32, so a 32-bit multiply will be used.
  108. */
  109. #if BITS_IN_JSAMPLE == 8
  110. #define DEQUANTIZE(coef,quantval) (((IFAST_MULT_TYPE) (coef)) * (quantval))
  111. #else
  112. #define DEQUANTIZE(coef,quantval) \
  113. DESCALE((coef)*(quantval), IFAST_SCALE_BITS-PASS1_BITS)
  114. #endif
  115. /* Like DESCALE, but applies to a DCTELEM and produces an int.
  116. * We assume that int right shift is unsigned if INT32 right shift is.
  117. */
  118. #ifdef RIGHT_SHIFT_IS_UNSIGNED
  119. #define ISHIFT_TEMPS DCTELEM ishift_temp;
  120. #if BITS_IN_JSAMPLE == 8
  121. #define DCTELEMBITS 16 /* DCTELEM may be 16 or 32 bits */
  122. #else
  123. #define DCTELEMBITS 32 /* DCTELEM must be 32 bits */
  124. #endif
  125. #define IRIGHT_SHIFT(x,shft) \
  126. ((ishift_temp = (x)) < 0 ? \
  127. (ishift_temp >> (shft)) | ((~((DCTELEM) 0)) << (DCTELEMBITS-(shft))) : \
  128. (ishift_temp >> (shft)))
  129. #else
  130. #define ISHIFT_TEMPS
  131. #define IRIGHT_SHIFT(x,shft) ((x) >> (shft))
  132. #endif
  133. #ifdef USE_ACCURATE_ROUNDING
  134. #define IDESCALE(x,n) ((int) IRIGHT_SHIFT((x) + (1 << ((n)-1)), n))
  135. #else
  136. #define IDESCALE(x,n) ((int) IRIGHT_SHIFT(x, n))
  137. #endif
  138. /*
  139. * Perform dequantization and inverse DCT on one block of coefficients.
  140. */
  141. GLOBAL(void)
  142. jpeg_idct_ifast (j_decompress_ptr cinfo, jpeg_component_info * compptr,
  143. JCOEFPTR coef_block,
  144. JSAMPARRAY output_buf, JDIMENSION output_col)
  145. {
  146. DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
  147. DCTELEM tmp10, tmp11, tmp12, tmp13;
  148. DCTELEM z5, z10, z11, z12, z13;
  149. JCOEFPTR inptr;
  150. IFAST_MULT_TYPE * quantptr;
  151. int * wsptr;
  152. JSAMPROW outptr;
  153. JSAMPLE *range_limit = IDCT_range_limit(cinfo);
  154. int ctr;
  155. int workspace[DCTSIZE2]; /* buffers data between passes */
  156. SHIFT_TEMPS /* for DESCALE */
  157. ISHIFT_TEMPS /* for IDESCALE */
  158. /* Pass 1: process columns from input, store into work array. */
  159. inptr = coef_block;
  160. quantptr = (IFAST_MULT_TYPE *) compptr->dct_table;
  161. wsptr = workspace;
  162. for (ctr = DCTSIZE; ctr > 0; ctr--) {
  163. /* Due to quantization, we will usually find that many of the input
  164. * coefficients are zero, especially the AC terms. We can exploit this
  165. * by short-circuiting the IDCT calculation for any column in which all
  166. * the AC terms are zero. In that case each output is equal to the
  167. * DC coefficient (with scale factor as needed).
  168. * With typical images and quantization tables, half or more of the
  169. * column DCT calculations can be simplified this way.
  170. */
  171. if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
  172. inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
  173. inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
  174. inptr[DCTSIZE*7] == 0) {
  175. /* AC terms all zero */
  176. int dcval = (int) DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
  177. wsptr[DCTSIZE*0] = dcval;
  178. wsptr[DCTSIZE*1] = dcval;
  179. wsptr[DCTSIZE*2] = dcval;
  180. wsptr[DCTSIZE*3] = dcval;
  181. wsptr[DCTSIZE*4] = dcval;
  182. wsptr[DCTSIZE*5] = dcval;
  183. wsptr[DCTSIZE*6] = dcval;
  184. wsptr[DCTSIZE*7] = dcval;
  185. inptr++; /* advance pointers to next column */
  186. quantptr++;
  187. wsptr++;
  188. continue;
  189. }
  190. /* Even part */
  191. tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
  192. tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
  193. tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
  194. tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
  195. tmp10 = tmp0 + tmp2; /* phase 3 */
  196. tmp11 = tmp0 - tmp2;
  197. tmp13 = tmp1 + tmp3; /* phases 5-3 */
  198. tmp12 = MULTIPLY(tmp1 - tmp3, FIX_1_414213562) - tmp13; /* 2*c4 */
  199. tmp0 = tmp10 + tmp13; /* phase 2 */
  200. tmp3 = tmp10 - tmp13;
  201. tmp1 = tmp11 + tmp12;
  202. tmp2 = tmp11 - tmp12;
  203. /* Odd part */
  204. tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
  205. tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
  206. tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
  207. tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
  208. z13 = tmp6 + tmp5; /* phase 6 */
  209. z10 = tmp6 - tmp5;
  210. z11 = tmp4 + tmp7;
  211. z12 = tmp4 - tmp7;
  212. tmp7 = z11 + z13; /* phase 5 */
  213. tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */
  214. z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
  215. tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */
  216. tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */
  217. tmp6 = tmp12 - tmp7; /* phase 2 */
  218. tmp5 = tmp11 - tmp6;
  219. tmp4 = tmp10 + tmp5;
  220. wsptr[DCTSIZE*0] = (int) (tmp0 + tmp7);
  221. wsptr[DCTSIZE*7] = (int) (tmp0 - tmp7);
  222. wsptr[DCTSIZE*1] = (int) (tmp1 + tmp6);
  223. wsptr[DCTSIZE*6] = (int) (tmp1 - tmp6);
  224. wsptr[DCTSIZE*2] = (int) (tmp2 + tmp5);
  225. wsptr[DCTSIZE*5] = (int) (tmp2 - tmp5);
  226. wsptr[DCTSIZE*4] = (int) (tmp3 + tmp4);
  227. wsptr[DCTSIZE*3] = (int) (tmp3 - tmp4);
  228. inptr++; /* advance pointers to next column */
  229. quantptr++;
  230. wsptr++;
  231. }
  232. /* Pass 2: process rows from work array, store into output array. */
  233. /* Note that we must descale the results by a factor of 8 == 2**3, */
  234. /* and also undo the PASS1_BITS scaling. */
  235. wsptr = workspace;
  236. for (ctr = 0; ctr < DCTSIZE; ctr++) {
  237. outptr = output_buf[ctr] + output_col;
  238. /* Rows of zeroes can be exploited in the same way as we did with columns.
  239. * However, the column calculation has created many nonzero AC terms, so
  240. * the simplification applies less often (typically 5% to 10% of the time).
  241. * On machines with very fast multiplication, it's possible that the
  242. * test takes more time than it's worth. In that case this section
  243. * may be commented out.
  244. */
  245. #ifndef NO_ZERO_ROW_TEST
  246. if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 &&
  247. wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
  248. /* AC terms all zero */
  249. JSAMPLE dcval = range_limit[IDESCALE(wsptr[0], PASS1_BITS+3)
  250. & RANGE_MASK];
  251. outptr[0] = dcval;
  252. outptr[1] = dcval;
  253. outptr[2] = dcval;
  254. outptr[3] = dcval;
  255. outptr[4] = dcval;
  256. outptr[5] = dcval;
  257. outptr[6] = dcval;
  258. outptr[7] = dcval;
  259. wsptr += DCTSIZE; /* advance pointer to next row */
  260. continue;
  261. }
  262. #endif
  263. /* Even part */
  264. tmp10 = ((DCTELEM) wsptr[0] + (DCTELEM) wsptr[4]);
  265. tmp11 = ((DCTELEM) wsptr[0] - (DCTELEM) wsptr[4]);
  266. tmp13 = ((DCTELEM) wsptr[2] + (DCTELEM) wsptr[6]);
  267. tmp12 = MULTIPLY((DCTELEM) wsptr[2] - (DCTELEM) wsptr[6], FIX_1_414213562)
  268. - tmp13;
  269. tmp0 = tmp10 + tmp13;
  270. tmp3 = tmp10 - tmp13;
  271. tmp1 = tmp11 + tmp12;
  272. tmp2 = tmp11 - tmp12;
  273. /* Odd part */
  274. z13 = (DCTELEM) wsptr[5] + (DCTELEM) wsptr[3];
  275. z10 = (DCTELEM) wsptr[5] - (DCTELEM) wsptr[3];
  276. z11 = (DCTELEM) wsptr[1] + (DCTELEM) wsptr[7];
  277. z12 = (DCTELEM) wsptr[1] - (DCTELEM) wsptr[7];
  278. tmp7 = z11 + z13; /* phase 5 */
  279. tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */
  280. z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
  281. tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */
  282. tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */
  283. tmp6 = tmp12 - tmp7; /* phase 2 */
  284. tmp5 = tmp11 - tmp6;
  285. tmp4 = tmp10 + tmp5;
  286. /* Final output stage: scale down by a factor of 8 and range-limit */
  287. outptr[0] = range_limit[IDESCALE(tmp0 + tmp7, PASS1_BITS+3)
  288. & RANGE_MASK];
  289. outptr[7] = range_limit[IDESCALE(tmp0 - tmp7, PASS1_BITS+3)
  290. & RANGE_MASK];
  291. outptr[1] = range_limit[IDESCALE(tmp1 + tmp6, PASS1_BITS+3)
  292. & RANGE_MASK];
  293. outptr[6] = range_limit[IDESCALE(tmp1 - tmp6, PASS1_BITS+3)
  294. & RANGE_MASK];
  295. outptr[2] = range_limit[IDESCALE(tmp2 + tmp5, PASS1_BITS+3)
  296. & RANGE_MASK];
  297. outptr[5] = range_limit[IDESCALE(tmp2 - tmp5, PASS1_BITS+3)
  298. & RANGE_MASK];
  299. outptr[4] = range_limit[IDESCALE(tmp3 + tmp4, PASS1_BITS+3)
  300. & RANGE_MASK];
  301. outptr[3] = range_limit[IDESCALE(tmp3 - tmp4, PASS1_BITS+3)
  302. & RANGE_MASK];
  303. wsptr += DCTSIZE; /* advance pointer to next row */
  304. }
  305. }
  306. #endif /* DCT_IFAST_SUPPORTED */