Collection of tools useful for audio production
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1237 lines
31KB

  1. /*
  2. Copyright 2011 David Robillard <http://drobilla.net>
  3. Permission to use, copy, modify, and/or distribute this software for any
  4. purpose with or without fee is hereby granted, provided that the above
  5. copyright notice and this permission notice appear in all copies.
  6. THIS SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  7. WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  8. MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  9. ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  10. WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  11. ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  12. OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  13. */
  14. // C99
  15. #include <assert.h>
  16. #include <errno.h>
  17. #include <stdint.h>
  18. #include <stdio.h>
  19. #include <stdlib.h>
  20. #include <string.h>
  21. #define ZIX_INLINE
  22. #include "zix/digest.c"
  23. #include "zix/hash.c"
  24. #include "zix/tree.c"
  25. #include "sord_config.h"
  26. #include "sord_internal.h"
  27. #define SORD_LOG(prefix, ...) fprintf(stderr, "[Sord::" prefix "] " __VA_ARGS__)
  28. #ifdef SORD_DEBUG_ITER
  29. # define SORD_ITER_LOG(...) SORD_LOG("iter", __VA_ARGS__)
  30. #else
  31. # define SORD_ITER_LOG(...)
  32. #endif
  33. #ifdef SORD_DEBUG_SEARCH
  34. # define SORD_FIND_LOG(...) SORD_LOG("search", __VA_ARGS__)
  35. #else
  36. # define SORD_FIND_LOG(...)
  37. #endif
  38. #ifdef SORD_DEBUG_WRITE
  39. # define SORD_WRITE_LOG(...) SORD_LOG("write", __VA_ARGS__)
  40. #else
  41. # define SORD_WRITE_LOG(...)
  42. #endif
  43. #define NUM_ORDERS 12
  44. #define STATEMENT_LEN 3
  45. #define TUP_LEN STATEMENT_LEN + 1
  46. #define DEFAULT_ORDER SPO
  47. #define DEFAULT_GRAPH_ORDER GSPO
  48. #define TUP_FMT "(%s %s %s %s)"
  49. #define TUP_FMT_ELEM(e) ((e) ? sord_node_get_string(e) : (const uint8_t*)"*")
  50. #define TUP_FMT_ARGS(t) \
  51. TUP_FMT_ELEM((t)[0]), \
  52. TUP_FMT_ELEM((t)[1]), \
  53. TUP_FMT_ELEM((t)[2]), \
  54. TUP_FMT_ELEM((t)[3])
  55. #define TUP_S 0
  56. #define TUP_P 1
  57. #define TUP_O 2
  58. #define TUP_G 3
  59. /** Triple ordering */
  60. typedef enum {
  61. SPO, ///< Subject, Predicate, Object
  62. SOP, ///< Subject, Object, Predicate
  63. OPS, ///< Object, Predicate, Subject
  64. OSP, ///< Object, Subject, Predicate
  65. PSO, ///< Predicate, Subject, Object
  66. POS, ///< Predicate, Object, Subject
  67. GSPO, ///< Graph, Subject, Predicate, Object
  68. GSOP, ///< Graph, Subject, Object, Predicate
  69. GOPS, ///< Graph, Object, Predicate, Subject
  70. GOSP, ///< Graph, Object, Subject, Predicate
  71. GPSO, ///< Graph, Predicate, Subject, Object
  72. GPOS, ///< Graph, Predicate, Object, Subject
  73. } SordOrder;
  74. /** String name of each ordering (array indexed by SordOrder) */
  75. static const char* const order_names[NUM_ORDERS] = {
  76. "spo", "sop", "ops", "osp", "pso", "pos",
  77. "gspo", "gsop", "gops", "gosp", "gpso", "gpos"
  78. };
  79. /**
  80. Quads of indices for each order, from most to least significant
  81. (array indexed by SordOrder)
  82. */
  83. static const int orderings[NUM_ORDERS][TUP_LEN] = {
  84. { 0, 1, 2, 3 }, { 0, 2, 1, 3 }, // SPO, SOP
  85. { 2, 1, 0, 3 }, { 2, 0, 1, 3 }, // OPS, OSP
  86. { 1, 0, 2, 3 }, { 1, 2, 0, 3 }, // PSO, POS
  87. { 3, 0, 1, 2 }, { 3, 0, 2, 1 }, // GSPO, GSOP
  88. { 3, 2, 1, 0 }, { 3, 2, 0, 1 }, // GOPS, GOSP
  89. { 3, 1, 0, 2 }, { 3, 1, 2, 0 } // GPSO, GPOS
  90. };
  91. /** World */
  92. struct SordWorldImpl {
  93. ZixHash* nodes;
  94. SerdErrorSink error_sink;
  95. void* error_handle;
  96. };
  97. /** Store */
  98. struct SordModelImpl {
  99. SordWorld* world;
  100. /** Index for each possible triple ordering (may or may not exist).
  101. * Each index is a tree of SordQuad with the appropriate ordering.
  102. */
  103. ZixTree* indices[NUM_ORDERS];
  104. size_t n_quads;
  105. };
  106. /** Mode for searching or iteration */
  107. typedef enum {
  108. ALL, ///< Iterate over entire store
  109. SINGLE, ///< Iteration over a single element (exact search)
  110. RANGE, ///< Iterate over range with equal prefix
  111. FILTER_RANGE, ///< Iterate over range with equal prefix, filtering
  112. FILTER_ALL ///< Iterate to end of store, filtering
  113. } SearchMode;
  114. /** Iterator over some range of a store */
  115. struct SordIterImpl {
  116. const SordModel* sord; ///< Model being iterated over
  117. ZixTreeIter* cur; ///< Current DB cursor
  118. SordQuad pat; ///< Pattern (in ordering order)
  119. int ordering[TUP_LEN]; ///< Store ordering
  120. SearchMode mode; ///< Iteration mode
  121. int n_prefix; ///< Prefix for RANGE and FILTER_RANGE
  122. bool end; ///< True iff reached end
  123. bool skip_graphs; ///< Iteration should ignore graphs
  124. };
  125. static uint32_t
  126. sord_node_hash(const void* n)
  127. {
  128. const SordNode* node = (const SordNode*)n;
  129. uint32_t hash = zix_digest_start();
  130. hash = zix_digest_add(hash, node->node.buf, node->node.n_bytes);
  131. hash = zix_digest_add(hash, &node->node.type, sizeof(node->node.type));
  132. if (node->node.type == SERD_LITERAL) {
  133. hash = zix_digest_add(hash, &node->meta.lit, sizeof(node->meta.lit));
  134. }
  135. return hash;
  136. }
  137. static bool
  138. sord_node_hash_equal(const void* a, const void* b)
  139. {
  140. const SordNode* a_node = (const SordNode*)a;
  141. const SordNode* b_node = (const SordNode*)b;
  142. return (a_node == b_node)
  143. || ((a_node->node.type == b_node->node.type) &&
  144. (a_node->node.type != SERD_LITERAL ||
  145. (a_node->meta.lit.datatype == b_node->meta.lit.datatype &&
  146. !strncmp(a_node->meta.lit.lang,
  147. b_node->meta.lit.lang,
  148. sizeof(a_node->meta.lit.lang)))) &&
  149. (serd_node_equals(&a_node->node, &b_node->node)));
  150. }
  151. static void
  152. error(SordWorld* world, SerdStatus st, const char* fmt, ...)
  153. {
  154. va_list args;
  155. va_start(args, fmt);
  156. const SerdError e = { st, NULL, 0, 0, fmt, &args };
  157. if (world->error_sink) {
  158. world->error_sink(world->error_handle, &e);
  159. } else {
  160. fprintf(stderr, "error: ");
  161. vfprintf(stderr, fmt, args);
  162. }
  163. va_end(args);
  164. }
  165. SordWorld*
  166. sord_world_new(void)
  167. {
  168. SordWorld* world = (SordWorld*)malloc(sizeof(SordWorld));
  169. world->error_sink = NULL;
  170. world->error_handle = NULL;
  171. world->nodes = zix_hash_new(
  172. sord_node_hash, sord_node_hash_equal, sizeof(SordNode));
  173. return world;
  174. }
  175. static void
  176. free_node_entry(const void* value, void* user_data)
  177. {
  178. const SordNode* node = (const SordNode*)value;
  179. if (node->node.type == SERD_LITERAL) {
  180. sord_node_free((SordWorld*)user_data, node->meta.lit.datatype);
  181. }
  182. free((uint8_t*)node->node.buf);
  183. }
  184. void
  185. sord_world_free(SordWorld* world)
  186. {
  187. zix_hash_foreach(world->nodes, free_node_entry, world);
  188. zix_hash_free(world->nodes);
  189. free(world);
  190. }
  191. void
  192. sord_world_set_error_sink(SordWorld* world,
  193. SerdErrorSink error_sink,
  194. void* handle)
  195. {
  196. world->error_sink = error_sink;
  197. world->error_handle = handle;
  198. }
  199. /** Compare nodes, considering NULL a wildcard match. */
  200. static inline int
  201. sord_node_compare(const SordNode* a, const SordNode* b)
  202. {
  203. if (a == b || !a || !b) {
  204. return 0; // Exact or wildcard match
  205. } else if (a->node.type != b->node.type) {
  206. return a->node.type - b->node.type;
  207. }
  208. int cmp = 0;
  209. switch (a->node.type) {
  210. case SERD_URI:
  211. case SERD_BLANK:
  212. return strcmp((const char*)a->node.buf, (const char*)b->node.buf);
  213. case SERD_LITERAL:
  214. cmp = strcmp((const char*)sord_node_get_string(a),
  215. (const char*)sord_node_get_string(b));
  216. if (cmp == 0) {
  217. // Note: Can't use sord_node_compare here since it does wildcards
  218. if (!a->meta.lit.datatype || !b->meta.lit.datatype) {
  219. cmp = a->meta.lit.datatype - b->meta.lit.datatype;
  220. } else {
  221. cmp = strcmp((const char*)a->meta.lit.datatype->node.buf,
  222. (const char*)b->meta.lit.datatype->node.buf);
  223. }
  224. }
  225. if (cmp == 0) {
  226. cmp = strcmp(a->meta.lit.lang, b->meta.lit.lang);
  227. }
  228. default:
  229. break;
  230. }
  231. return cmp;
  232. }
  233. bool
  234. sord_node_equals(const SordNode* a, const SordNode* b)
  235. {
  236. return a == b; // Nodes are interned
  237. }
  238. /** Return true iff IDs are equivalent, or one is a wildcard */
  239. static inline bool
  240. sord_id_match(const SordNode* a, const SordNode* b)
  241. {
  242. return !a || !b || (a == b);
  243. }
  244. static inline bool
  245. sord_quad_match_inline(const SordQuad x, const SordQuad y)
  246. {
  247. return sord_id_match(x[0], y[0])
  248. && sord_id_match(x[1], y[1])
  249. && sord_id_match(x[2], y[2])
  250. && sord_id_match(x[3], y[3]);
  251. }
  252. bool
  253. sord_quad_match(const SordQuad x, const SordQuad y)
  254. {
  255. return sord_quad_match_inline(x, y);
  256. }
  257. /**
  258. Compare two quad IDs lexicographically.
  259. NULL IDs (equal to 0) are treated as wildcards, always less than every
  260. other possible ID, except itself.
  261. */
  262. static int
  263. sord_quad_compare(const void* x_ptr, const void* y_ptr, void* user_data)
  264. {
  265. const int* const ordering = (const int*)user_data;
  266. const SordNode*const*const x = (const SordNode*const*)x_ptr;
  267. const SordNode*const*const y = (const SordNode*const*)y_ptr;
  268. for (int i = 0; i < TUP_LEN; ++i) {
  269. const int idx = ordering[i];
  270. const int cmp = sord_node_compare(x[idx], y[idx]);
  271. if (cmp) {
  272. return cmp;
  273. }
  274. }
  275. return 0;
  276. }
  277. static inline bool
  278. sord_iter_forward(SordIter* iter)
  279. {
  280. if (!iter->skip_graphs) {
  281. iter->cur = zix_tree_iter_next(iter->cur);
  282. return zix_tree_iter_is_end(iter->cur);
  283. }
  284. SordNode** key = (SordNode**)zix_tree_get(iter->cur);
  285. const SordQuad initial = { key[0], key[1], key[2], key[3] };
  286. while (true) {
  287. iter->cur = zix_tree_iter_next(iter->cur);
  288. if (zix_tree_iter_is_end(iter->cur))
  289. return true;
  290. key = (SordNode**)zix_tree_get(iter->cur);
  291. for (int i = 0; i < 3; ++i)
  292. if (key[i] != initial[i])
  293. return false;
  294. }
  295. assert(false);
  296. }
  297. /**
  298. Seek forward as necessary until @a iter points at a match.
  299. @return true iff iterator reached end of valid range.
  300. */
  301. static inline bool
  302. sord_iter_seek_match(SordIter* iter)
  303. {
  304. for (iter->end = true;
  305. !zix_tree_iter_is_end(iter->cur);
  306. sord_iter_forward(iter)) {
  307. const SordNode** const key = (const SordNode**)zix_tree_get(iter->cur);
  308. if (sord_quad_match_inline(key, iter->pat))
  309. return (iter->end = false);
  310. }
  311. return true;
  312. }
  313. /**
  314. Seek forward as necessary until @a iter points at a match, or the prefix
  315. no longer matches iter->pat.
  316. @return true iff iterator reached end of valid range.
  317. */
  318. static inline bool
  319. sord_iter_seek_match_range(SordIter* iter)
  320. {
  321. if (iter->end)
  322. return true;
  323. do {
  324. const SordNode** key = (const SordNode**)zix_tree_get(iter->cur);
  325. if (sord_quad_match_inline(key, iter->pat))
  326. return false; // Found match
  327. for (int i = 0; i < iter->n_prefix; ++i) {
  328. const int idx = iter->ordering[i];
  329. if (!sord_id_match(key[idx], iter->pat[idx])) {
  330. iter->end = true; // Reached end of valid range
  331. return true;
  332. }
  333. }
  334. } while (!sord_iter_forward(iter));
  335. return (iter->end = true); // Reached end
  336. }
  337. static SordIter*
  338. sord_iter_new(const SordModel* sord, ZixTreeIter* cur, const SordQuad pat,
  339. SordOrder order, SearchMode mode, int n_prefix)
  340. {
  341. const int* ordering = orderings[order];
  342. SordIter* iter = (SordIter*)malloc(sizeof(SordIter));
  343. iter->sord = sord;
  344. iter->cur = cur;
  345. iter->mode = mode;
  346. iter->n_prefix = n_prefix;
  347. iter->end = false;
  348. iter->skip_graphs = order < GSPO;
  349. for (int i = 0; i < TUP_LEN; ++i) {
  350. iter->pat[i] = pat[i];
  351. iter->ordering[i] = ordering[i];
  352. }
  353. switch (iter->mode) {
  354. case ALL:
  355. case SINGLE:
  356. case RANGE:
  357. assert(
  358. sord_quad_match_inline((const SordNode**)zix_tree_get(iter->cur),
  359. iter->pat));
  360. break;
  361. case FILTER_RANGE:
  362. sord_iter_seek_match_range(iter);
  363. break;
  364. case FILTER_ALL:
  365. sord_iter_seek_match(iter);
  366. break;
  367. }
  368. #ifdef SORD_DEBUG_ITER
  369. SordQuad value;
  370. sord_iter_get(iter, value);
  371. SORD_ITER_LOG("New %p pat=" TUP_FMT " cur=" TUP_FMT " end=%d skip=%d\n",
  372. (void*)iter, TUP_FMT_ARGS(pat), TUP_FMT_ARGS(value),
  373. iter->end, iter->skip_graphs);
  374. #endif
  375. return iter;
  376. }
  377. const SordModel*
  378. sord_iter_get_model(SordIter* iter)
  379. {
  380. return iter->sord;
  381. }
  382. void
  383. sord_iter_get(const SordIter* iter, SordQuad id)
  384. {
  385. SordNode** key = (SordNode**)zix_tree_get(iter->cur);
  386. for (int i = 0; i < TUP_LEN; ++i) {
  387. id[i] = key[i];
  388. }
  389. }
  390. const SordNode*
  391. sord_iter_get_node(const SordIter* iter, SordQuadIndex index)
  392. {
  393. return iter ? ((SordNode**)zix_tree_get(iter->cur))[index] : NULL;
  394. }
  395. bool
  396. sord_iter_next(SordIter* iter)
  397. {
  398. if (iter->end)
  399. return true;
  400. const SordNode** key;
  401. iter->end = sord_iter_forward(iter);
  402. if (!iter->end) {
  403. switch (iter->mode) {
  404. case ALL:
  405. // At the end if the cursor is (assigned above)
  406. break;
  407. case SINGLE:
  408. iter->end = true;
  409. SORD_ITER_LOG("%p reached single end\n", (void*)iter);
  410. break;
  411. case RANGE:
  412. SORD_ITER_LOG("%p range next\n", (void*)iter);
  413. // At the end if the MSNs no longer match
  414. key = (const SordNode**)zix_tree_get(iter->cur);
  415. assert(key);
  416. for (int i = 0; i < iter->n_prefix; ++i) {
  417. const int idx = iter->ordering[i];
  418. if (!sord_id_match(key[idx], iter->pat[idx])) {
  419. iter->end = true;
  420. SORD_ITER_LOG("%p reached non-match end\n", (void*)iter);
  421. break;
  422. }
  423. }
  424. break;
  425. case FILTER_RANGE:
  426. // Seek forward to next match, stopping if prefix changes
  427. sord_iter_seek_match_range(iter);
  428. break;
  429. case FILTER_ALL:
  430. // Seek forward to next match
  431. sord_iter_seek_match(iter);
  432. break;
  433. }
  434. } else {
  435. SORD_ITER_LOG("%p reached index end\n", (void*)iter);
  436. }
  437. if (iter->end) {
  438. SORD_ITER_LOG("%p Reached end\n", (void*)iter);
  439. return true;
  440. } else {
  441. #ifdef SORD_DEBUG_ITER
  442. SordQuad tup;
  443. sord_iter_get(iter, tup);
  444. SORD_ITER_LOG("%p Increment to " TUP_FMT "\n",
  445. (void*)iter, TUP_FMT_ARGS(tup));
  446. #endif
  447. return false;
  448. }
  449. }
  450. bool
  451. sord_iter_end(const SordIter* iter)
  452. {
  453. return !iter || iter->end;
  454. }
  455. void
  456. sord_iter_free(SordIter* iter)
  457. {
  458. SORD_ITER_LOG("%p Free\n", (void*)iter);
  459. if (iter) {
  460. free(iter);
  461. }
  462. }
  463. /**
  464. Return true iff @a sord has an index for @a order.
  465. If @a graphs is true, @a order will be modified to be the
  466. corresponding order with a G prepended (so G will be the MSN).
  467. */
  468. static inline bool
  469. sord_has_index(SordModel* sord, SordOrder* order, int* n_prefix, bool graphs)
  470. {
  471. if (graphs) {
  472. *order = (SordOrder)(*order + GSPO);
  473. *n_prefix += 1;
  474. }
  475. return sord->indices[*order];
  476. }
  477. /**
  478. Return the best available index for a pattern.
  479. @param pat Pattern in standard (S P O G) order
  480. @param mode Set to the (best) iteration mode for iterating over results
  481. @param n_prefix Set to the length of the range prefix
  482. (for @a mode == RANGE and @a mode == FILTER_RANGE)
  483. */
  484. static inline SordOrder
  485. sord_best_index(SordModel* sord,
  486. const SordQuad pat,
  487. SearchMode* mode,
  488. int* n_prefix)
  489. {
  490. const bool graph_search = (pat[TUP_G] != 0);
  491. const unsigned sig
  492. = (pat[0] ? 1 : 0) * 0x100
  493. + (pat[1] ? 1 : 0) * 0x010
  494. + (pat[2] ? 1 : 0) * 0x001;
  495. SordOrder good[2] = { (SordOrder)-1, (SordOrder)-1 };
  496. #define PAT_CASE(sig, m, g0, g1, np) \
  497. case sig: \
  498. *mode = m; \
  499. good[0] = g0; \
  500. good[1] = g1; \
  501. *n_prefix = np; \
  502. break
  503. // Good orderings that don't require filtering
  504. *mode = RANGE;
  505. *n_prefix = 0;
  506. switch (sig) {
  507. case 0x000:
  508. *mode = ALL;
  509. return graph_search ? DEFAULT_GRAPH_ORDER : DEFAULT_ORDER;
  510. case 0x111:
  511. *mode = SINGLE;
  512. return graph_search ? DEFAULT_GRAPH_ORDER : DEFAULT_ORDER;
  513. PAT_CASE(0x001, RANGE, OPS, OSP, 1);
  514. PAT_CASE(0x010, RANGE, POS, PSO, 1);
  515. PAT_CASE(0x011, RANGE, OPS, POS, 2);
  516. PAT_CASE(0x100, RANGE, SPO, SOP, 1);
  517. PAT_CASE(0x101, RANGE, SOP, OSP, 2);
  518. PAT_CASE(0x110, RANGE, SPO, PSO, 2);
  519. }
  520. if (*mode == RANGE) {
  521. if (sord_has_index(sord, &good[0], n_prefix, graph_search)) {
  522. return good[0];
  523. } else if (sord_has_index(sord, &good[1], n_prefix, graph_search)) {
  524. return good[1];
  525. }
  526. }
  527. // Not so good orderings that require filtering, but can
  528. // still be constrained to a range
  529. switch (sig) {
  530. PAT_CASE(0x011, FILTER_RANGE, OSP, PSO, 1);
  531. PAT_CASE(0x101, FILTER_RANGE, SPO, OPS, 1);
  532. PAT_CASE(0x110, FILTER_RANGE, SOP, POS, 1);
  533. default: break;
  534. }
  535. if (*mode == FILTER_RANGE) {
  536. if (sord_has_index(sord, &good[0], n_prefix, graph_search)) {
  537. return good[0];
  538. } else if (sord_has_index(sord, &good[1], n_prefix, graph_search)) {
  539. return good[1];
  540. }
  541. }
  542. if (graph_search) {
  543. *mode = FILTER_RANGE;
  544. *n_prefix = 1;
  545. return DEFAULT_GRAPH_ORDER;
  546. } else {
  547. *mode = FILTER_ALL;
  548. return DEFAULT_ORDER;
  549. }
  550. }
  551. SordModel*
  552. sord_new(SordWorld* world, unsigned indices, bool graphs)
  553. {
  554. SordModel* sord = (SordModel*)malloc(sizeof(struct SordModelImpl));
  555. sord->world = world;
  556. sord->n_quads = 0;
  557. for (unsigned i = 0; i < (NUM_ORDERS / 2); ++i) {
  558. const int* const ordering = orderings[i];
  559. const int* const g_ordering = orderings[i + (NUM_ORDERS / 2)];
  560. if (indices & (1 << i)) {
  561. sord->indices[i] = zix_tree_new(
  562. false, sord_quad_compare, (void*)ordering, NULL);
  563. if (graphs) {
  564. sord->indices[i + (NUM_ORDERS / 2)] = zix_tree_new(
  565. false, sord_quad_compare, (void*)g_ordering, NULL);
  566. } else {
  567. sord->indices[i + (NUM_ORDERS / 2)] = NULL;
  568. }
  569. } else {
  570. sord->indices[i] = NULL;
  571. sord->indices[i + (NUM_ORDERS / 2)] = NULL;
  572. }
  573. }
  574. if (!sord->indices[DEFAULT_ORDER]) {
  575. sord->indices[DEFAULT_ORDER] = zix_tree_new(
  576. false, sord_quad_compare, (void*)orderings[DEFAULT_ORDER], NULL);
  577. }
  578. if (graphs && !sord->indices[DEFAULT_GRAPH_ORDER]) {
  579. sord->indices[DEFAULT_GRAPH_ORDER] = zix_tree_new(
  580. false, sord_quad_compare, (void*)orderings[DEFAULT_GRAPH_ORDER], NULL);
  581. }
  582. return sord;
  583. }
  584. static void
  585. sord_node_free_internal(SordWorld* world, SordNode* node)
  586. {
  587. assert(node->refs == 0);
  588. // Cache pointer to buffer to free after node removal and destruction
  589. const uint8_t* const buf = node->node.buf;
  590. // Remove node from hash (which frees the node)
  591. if (zix_hash_remove(world->nodes, node)) {
  592. error(world, SERD_ERR_INTERNAL, "failed to remove node from hash\n");
  593. }
  594. // Free buffer
  595. free((uint8_t*)buf);
  596. }
  597. static void
  598. sord_add_quad_ref(SordModel* sord, const SordNode* node, SordQuadIndex i)
  599. {
  600. if (node) {
  601. assert(node->refs > 0);
  602. ++((SordNode*)node)->refs;
  603. if (node->node.type != SERD_LITERAL && i == SORD_OBJECT) {
  604. ++((SordNode*)node)->meta.res.refs_as_obj;
  605. }
  606. }
  607. }
  608. static void
  609. sord_drop_quad_ref(SordModel* sord, const SordNode* node, SordQuadIndex i)
  610. {
  611. if (!node) {
  612. return;
  613. }
  614. assert(node->refs > 0);
  615. if (node->node.type != SERD_LITERAL && i == SORD_OBJECT) {
  616. assert(node->meta.res.refs_as_obj > 0);
  617. --((SordNode*)node)->meta.res.refs_as_obj;
  618. }
  619. if (--((SordNode*)node)->refs == 0) {
  620. sord_node_free_internal(sord_get_world(sord), (SordNode*)node);
  621. }
  622. }
  623. void
  624. sord_free(SordModel* sord)
  625. {
  626. if (!sord)
  627. return;
  628. // Free nodes
  629. SordQuad tup;
  630. SordIter* i = sord_begin(sord);
  631. for (; !sord_iter_end(i); sord_iter_next(i)) {
  632. sord_iter_get(i, tup);
  633. for (int t = 0; t < TUP_LEN; ++t) {
  634. sord_drop_quad_ref(sord, tup[t], (SordQuadIndex)t);
  635. }
  636. }
  637. sord_iter_free(i);
  638. // Free quads
  639. for (ZixTreeIter* t = zix_tree_begin(sord->indices[DEFAULT_ORDER]);
  640. !zix_tree_iter_is_end(t);
  641. t = zix_tree_iter_next(t)) {
  642. free(zix_tree_get(t));
  643. }
  644. // Free indices
  645. for (unsigned o = 0; o < NUM_ORDERS; ++o)
  646. if (sord->indices[o])
  647. zix_tree_free(sord->indices[o]);
  648. free(sord);
  649. }
  650. SordWorld*
  651. sord_get_world(SordModel* sord)
  652. {
  653. return sord->world;
  654. }
  655. size_t
  656. sord_num_quads(const SordModel* sord)
  657. {
  658. return sord->n_quads;
  659. }
  660. size_t
  661. sord_num_nodes(const SordWorld* world)
  662. {
  663. return zix_hash_size(world->nodes);
  664. }
  665. SordIter*
  666. sord_begin(const SordModel* sord)
  667. {
  668. if (sord_num_quads(sord) == 0) {
  669. return NULL;
  670. } else {
  671. ZixTreeIter* cur = zix_tree_begin(sord->indices[DEFAULT_ORDER]);
  672. SordQuad pat = { 0, 0, 0, 0 };
  673. return sord_iter_new(sord, cur, pat, DEFAULT_ORDER, ALL, 0);
  674. }
  675. }
  676. static inline ZixTreeIter*
  677. index_search(ZixTree* db, const SordQuad search_key)
  678. {
  679. ZixTreeIter* iter = NULL;
  680. zix_tree_find(db, (const void*)search_key, &iter);
  681. return iter;
  682. }
  683. static inline ZixTreeIter*
  684. index_lower_bound(ZixTree* db, const SordQuad search_key)
  685. {
  686. ZixTreeIter* iter = NULL;
  687. zix_tree_find(db, (const void*)search_key, &iter);
  688. if (!iter) {
  689. return NULL;
  690. }
  691. ZixTreeIter* prev = NULL;
  692. while ((prev = zix_tree_iter_prev(iter))) {
  693. if (!prev) {
  694. return iter;
  695. }
  696. const SordNode** const key = (const SordNode**)zix_tree_get(prev);
  697. if (!sord_quad_match_inline(key, search_key)) {
  698. return iter;
  699. }
  700. iter = prev;
  701. }
  702. return iter;
  703. }
  704. SordIter*
  705. sord_find(SordModel* sord, const SordQuad pat)
  706. {
  707. if (!pat[0] && !pat[1] && !pat[2] && !pat[3])
  708. return sord_begin(sord);
  709. SearchMode mode;
  710. int n_prefix;
  711. const SordOrder index_order = sord_best_index(sord, pat, &mode, &n_prefix);
  712. SORD_FIND_LOG("Find " TUP_FMT " index=%s mode=%d"
  713. " n_prefix=%d ordering=%d%d%d%d\n",
  714. TUP_FMT_ARGS(pat), order_names[index_order], mode, n_prefix,
  715. ordering[0], ordering[1], ordering[2], ordering[3]);
  716. if (pat[0] && pat[1] && pat[2] && pat[3])
  717. mode = SINGLE; // No duplicate quads (Sord is a set)
  718. ZixTree* const db = sord->indices[index_order];
  719. ZixTreeIter* const cur = index_lower_bound(db, pat);
  720. if (zix_tree_iter_is_end(cur)) {
  721. SORD_FIND_LOG("No match found\n");
  722. return NULL;
  723. }
  724. const SordNode** const key = (const SordNode**)zix_tree_get(cur);
  725. if (!key || ( (mode == RANGE || mode == SINGLE)
  726. && !sord_quad_match_inline(pat, key) )) {
  727. SORD_FIND_LOG("No match found\n");
  728. return NULL;
  729. }
  730. return sord_iter_new(sord, cur, pat, index_order, mode, n_prefix);
  731. }
  732. SordIter*
  733. sord_search(SordModel* model,
  734. const SordNode* s,
  735. const SordNode* p,
  736. const SordNode* o,
  737. const SordNode* g)
  738. {
  739. SordQuad pat = { s, p, o, g };
  740. return sord_find(model, pat);
  741. }
  742. bool
  743. sord_ask(SordModel* model,
  744. const SordNode* s,
  745. const SordNode* p,
  746. const SordNode* o,
  747. const SordNode* g)
  748. {
  749. SordQuad pat = { s, p, o, g };
  750. return sord_contains(model, pat);
  751. }
  752. uint64_t
  753. sord_count(SordModel* model,
  754. const SordNode* s,
  755. const SordNode* p,
  756. const SordNode* o,
  757. const SordNode* g)
  758. {
  759. SordIter* i = sord_search(model, s, p, o, g);
  760. uint64_t n = 0;
  761. for (; !sord_iter_end(i); sord_iter_next(i)) {
  762. ++n;
  763. }
  764. sord_iter_free(i);
  765. return n;
  766. }
  767. bool
  768. sord_contains(SordModel* sord, const SordQuad pat)
  769. {
  770. SordIter* iter = sord_find(sord, pat);
  771. bool ret = (iter != NULL);
  772. sord_iter_free(iter);
  773. return ret;
  774. }
  775. static uint8_t*
  776. sord_strndup(const uint8_t* str, size_t len)
  777. {
  778. uint8_t* dup = (uint8_t*)malloc(len + 1);
  779. memcpy(dup, str, len + 1);
  780. return dup;
  781. }
  782. SordNodeType
  783. sord_node_get_type(const SordNode* node)
  784. {
  785. switch (node->node.type) {
  786. case SERD_BLANK:
  787. return SORD_BLANK;
  788. case SERD_LITERAL:
  789. return SORD_LITERAL;
  790. case SERD_URI:
  791. return SORD_URI;
  792. default:
  793. fprintf(stderr, "error: invalid node type\n");
  794. return (SordNodeType)0;
  795. }
  796. }
  797. const uint8_t*
  798. sord_node_get_string(const SordNode* node)
  799. {
  800. return node->node.buf;
  801. }
  802. const uint8_t*
  803. sord_node_get_string_counted(const SordNode* node, size_t* len)
  804. {
  805. *len = node->node.n_chars;
  806. return node->node.buf;
  807. }
  808. const char*
  809. sord_node_get_language(const SordNode* node)
  810. {
  811. if (node->node.type != SERD_LITERAL || !node->meta.lit.lang[0]) {
  812. return NULL;
  813. }
  814. return node->meta.lit.lang;
  815. }
  816. SordNode*
  817. sord_node_get_datatype(const SordNode* node)
  818. {
  819. return (node->node.type == SERD_LITERAL) ? node->meta.lit.datatype : NULL;
  820. }
  821. SerdNodeFlags
  822. sord_node_get_flags(const SordNode* node)
  823. {
  824. return node->node.flags;
  825. }
  826. bool
  827. sord_node_is_inline_object(const SordNode* node)
  828. {
  829. return (node->node.type == SERD_BLANK) && (node->meta.res.refs_as_obj == 1);
  830. }
  831. static SordNode*
  832. sord_insert_node(SordWorld* world, const SordNode* key, bool copy)
  833. {
  834. SordNode* node = NULL;
  835. ZixStatus st = zix_hash_insert(world->nodes, key, (const void**)&node);
  836. switch (st) {
  837. case ZIX_STATUS_EXISTS:
  838. ++node->refs;
  839. break;
  840. case ZIX_STATUS_SUCCESS:
  841. assert(node->refs == 1);
  842. if (copy) {
  843. node->node.buf = sord_strndup(node->node.buf, node->node.n_bytes);
  844. }
  845. if (node->node.type == SERD_LITERAL) {
  846. node->meta.lit.datatype = sord_node_copy(node->meta.lit.datatype);
  847. }
  848. return node;
  849. default:
  850. assert(!node);
  851. error(world, SERD_ERR_INTERNAL,
  852. "error inserting node `%s'\n", key->node.buf);
  853. }
  854. if (!copy) {
  855. // Free the buffer we would have copied if a new node was created
  856. free((uint8_t*)key->node.buf);
  857. }
  858. return node;
  859. }
  860. static SordNode*
  861. sord_new_uri_counted(SordWorld* world, const uint8_t* str,
  862. size_t n_bytes, size_t n_chars, bool copy)
  863. {
  864. if (!serd_uri_string_has_scheme(str)) {
  865. error(world, SERD_ERR_BAD_ARG,
  866. "attempt to map invalid URI `%s'\n", str);
  867. return NULL; // Can't intern relative URIs
  868. }
  869. const SordNode key = {
  870. { str, n_bytes, n_chars, 0, SERD_URI }, 1, { { 0 } }
  871. };
  872. return sord_insert_node(world, &key, copy);
  873. }
  874. SordNode*
  875. sord_new_uri(SordWorld* world, const uint8_t* str)
  876. {
  877. const SerdNode node = serd_node_from_string(SERD_URI, str);
  878. return sord_new_uri_counted(world, str, node.n_bytes, node.n_chars, true);
  879. }
  880. SordNode*
  881. sord_new_relative_uri(SordWorld* world,
  882. const uint8_t* str,
  883. const uint8_t* base_str)
  884. {
  885. if (serd_uri_string_has_scheme(str)) {
  886. return sord_new_uri(world, str);
  887. }
  888. SerdURI buri = SERD_URI_NULL;
  889. SerdNode base = serd_node_new_uri_from_string(base_str, NULL, &buri);
  890. SerdNode node = serd_node_new_uri_from_string(str, &buri, NULL);
  891. SordNode* ret = sord_new_uri_counted(
  892. world, node.buf, node.n_bytes, node.n_chars, false);
  893. serd_node_free(&base);
  894. return ret;
  895. }
  896. static SordNode*
  897. sord_new_blank_counted(SordWorld* world, const uint8_t* str,
  898. size_t n_bytes, size_t n_chars)
  899. {
  900. const SordNode key = {
  901. { str, n_bytes, n_chars, 0, SERD_BLANK }, 1, { { 0 } }
  902. };
  903. return sord_insert_node(world, &key, true);
  904. }
  905. SordNode*
  906. sord_new_blank(SordWorld* world, const uint8_t* str)
  907. {
  908. const SerdNode node = serd_node_from_string(SERD_URI, str);
  909. return sord_new_blank_counted(world, str, node.n_bytes, node.n_chars);
  910. }
  911. static SordNode*
  912. sord_new_literal_counted(SordWorld* world,
  913. SordNode* datatype,
  914. const uint8_t* str,
  915. size_t n_bytes,
  916. size_t n_chars,
  917. SerdNodeFlags flags,
  918. const char* lang)
  919. {
  920. SordNode key = {
  921. { str, n_bytes, n_chars, flags, SERD_LITERAL }, 1, { { 0 } }
  922. };
  923. key.meta.lit.datatype = datatype;
  924. memset(key.meta.lit.lang, 0, sizeof(key.meta.lit.lang));
  925. if (lang) {
  926. strncpy(key.meta.lit.lang, lang, sizeof(key.meta.lit.lang));
  927. }
  928. return sord_insert_node(world, &key, true);
  929. }
  930. SordNode*
  931. sord_new_literal(SordWorld* world, SordNode* datatype,
  932. const uint8_t* str, const char* lang)
  933. {
  934. SerdNodeFlags flags = 0;
  935. size_t n_bytes = 0;
  936. size_t n_chars = serd_strlen(str, &n_bytes, &flags);
  937. return sord_new_literal_counted(world, datatype,
  938. str, n_bytes, n_chars, flags,
  939. lang);
  940. }
  941. SordNode*
  942. sord_node_from_serd_node(SordWorld* world,
  943. SerdEnv* env,
  944. const SerdNode* sn,
  945. const SerdNode* datatype,
  946. const SerdNode* lang)
  947. {
  948. if (!sn) {
  949. return NULL;
  950. }
  951. SordNode* datatype_node = NULL;
  952. SordNode* ret = NULL;
  953. switch (sn->type) {
  954. case SERD_NOTHING:
  955. return NULL;
  956. case SERD_LITERAL:
  957. datatype_node = sord_node_from_serd_node(
  958. world, env, datatype, NULL, NULL),
  959. ret = sord_new_literal_counted(
  960. world,
  961. datatype_node,
  962. sn->buf,
  963. sn->n_bytes,
  964. sn->n_chars,
  965. sn->flags,
  966. lang ? (const char*)lang->buf : NULL);
  967. sord_node_free(world, datatype_node);
  968. return ret;
  969. case SERD_URI:
  970. if (serd_uri_string_has_scheme(sn->buf)) {
  971. return sord_new_uri_counted(
  972. world, sn->buf, sn->n_bytes, sn->n_chars, true);
  973. } else {
  974. SerdURI base_uri;
  975. serd_env_get_base_uri(env, &base_uri);
  976. SerdURI abs_uri;
  977. SerdNode abs_uri_node = serd_node_new_uri_from_node(
  978. sn, &base_uri, &abs_uri);
  979. ret = sord_new_uri_counted(world,
  980. abs_uri_node.buf,
  981. abs_uri_node.n_bytes,
  982. abs_uri_node.n_chars,
  983. true);
  984. serd_node_free(&abs_uri_node);
  985. return ret;
  986. }
  987. case SERD_CURIE: {
  988. SerdChunk uri_prefix;
  989. SerdChunk uri_suffix;
  990. if (serd_env_expand(env, sn, &uri_prefix, &uri_suffix)) {
  991. error(world, SERD_ERR_BAD_CURIE,
  992. "failed to expand CURIE `%s'\n", sn->buf);
  993. return NULL;
  994. }
  995. const size_t uri_len = uri_prefix.len + uri_suffix.len;
  996. uint8_t* buf = (uint8_t*)malloc(uri_len + 1);
  997. memcpy(buf, uri_prefix.buf, uri_prefix.len);
  998. memcpy(buf + uri_prefix.len, uri_suffix.buf, uri_suffix.len);
  999. buf[uri_len] = '\0';
  1000. ret = sord_new_uri_counted(
  1001. world, buf, uri_prefix.len + uri_suffix.len,
  1002. uri_prefix.len + uri_suffix.len, false); // FIXME: UTF-8
  1003. return ret;
  1004. }
  1005. case SERD_BLANK:
  1006. return sord_new_blank_counted(world, sn->buf, sn->n_bytes, sn->n_chars);
  1007. }
  1008. return NULL;
  1009. }
  1010. const SerdNode*
  1011. sord_node_to_serd_node(const SordNode* node)
  1012. {
  1013. return node ? &node->node : &SERD_NODE_NULL;
  1014. }
  1015. void
  1016. sord_node_free(SordWorld* world, SordNode* node)
  1017. {
  1018. if (!node) {
  1019. return;
  1020. }
  1021. assert(node->refs > 0);
  1022. if (--node->refs == 0) {
  1023. sord_node_free_internal(world, node);
  1024. }
  1025. }
  1026. SordNode*
  1027. sord_node_copy(const SordNode* node)
  1028. {
  1029. SordNode* copy = (SordNode*)node;
  1030. if (copy) {
  1031. ++copy->refs;
  1032. }
  1033. return copy;
  1034. }
  1035. static inline bool
  1036. sord_add_to_index(SordModel* sord, const SordNode** tup, SordOrder order)
  1037. {
  1038. return !zix_tree_insert(sord->indices[order], tup, NULL);
  1039. }
  1040. bool
  1041. sord_add(SordModel* sord, const SordQuad tup)
  1042. {
  1043. SORD_WRITE_LOG("Add " TUP_FMT "\n", TUP_FMT_ARGS(tup));
  1044. if (!tup[0] || !tup[1] || !tup[2]) {
  1045. error(sord->world, SERD_ERR_BAD_ARG,
  1046. "attempt to add quad with NULL field\n");
  1047. return false;
  1048. }
  1049. const SordNode** quad = (const SordNode**)malloc(sizeof(SordQuad));
  1050. memcpy(quad, tup, sizeof(SordQuad));
  1051. for (unsigned i = 0; i < NUM_ORDERS; ++i) {
  1052. if (sord->indices[i]) {
  1053. if (!sord_add_to_index(sord, quad, (SordOrder)i)) {
  1054. assert(i == 0); // Assuming index coherency
  1055. free(quad);
  1056. return false; // Quad already stored, do nothing
  1057. }
  1058. }
  1059. }
  1060. for (int i = 0; i < TUP_LEN; ++i)
  1061. sord_add_quad_ref(sord, tup[i], (SordQuadIndex)i);
  1062. ++sord->n_quads;
  1063. return true;
  1064. }
  1065. void
  1066. sord_remove(SordModel* sord, const SordQuad tup)
  1067. {
  1068. SORD_WRITE_LOG("Remove " TUP_FMT "\n", TUP_FMT_ARGS(tup));
  1069. SordNode** quad = NULL;
  1070. for (unsigned i = 0; i < NUM_ORDERS; ++i) {
  1071. if (sord->indices[i]) {
  1072. ZixTreeIter* const cur = index_search(sord->indices[i], tup);
  1073. if (!zix_tree_iter_is_end(cur)) {
  1074. if (!quad) {
  1075. quad = (SordNode**)zix_tree_get(cur);
  1076. }
  1077. zix_tree_remove(sord->indices[i], cur);
  1078. } else {
  1079. assert(i == 0); // Assuming index coherency
  1080. return; // Quad not found, do nothing
  1081. }
  1082. }
  1083. }
  1084. free(quad);
  1085. for (int i = 0; i < TUP_LEN; ++i)
  1086. sord_drop_quad_ref(sord, tup[i], (SordQuadIndex)i);
  1087. --sord->n_quads;
  1088. }