|
- #!/usr/bin/python2.5
- #
- # Copyright 2014 Olivier Gillet.
- #
- # Author: Olivier Gillet (ol.gillet@gmail.com)
- #
- # Permission is hereby granted, free of charge, to any person obtaining a copy
- # of this software and associated documentation files (the "Software"), to deal
- # in the Software without restriction, including without limitation the rights
- # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- # copies of the Software, and to permit persons to whom the Software is
- # furnished to do so, subject to the following conditions:
- #
- # The above copyright notice and this permission notice shall be included in
- # all copies or substantial portions of the Software.
- #
- # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
- # THE SOFTWARE.
- #
- # See http://creativecommons.org/licenses/MIT/ for more information.
- #
- # -----------------------------------------------------------------------------
- #
- # Waveform definitions.
-
- import numpy
-
- waveforms = []
-
- """----------------------------------------------------------------------------
- Sine wave
- ----------------------------------------------------------------------------"""
- WAVETABLE_SIZE=1024
-
- x = numpy.arange(0, WAVETABLE_SIZE + 1) / float(WAVETABLE_SIZE)
- x[-1] = x[0]
- sine = numpy.sin(2 * numpy.pi * x)
- waveforms.append(('sine1024', (32767 * sine).astype(int)))
-
- WAVETABLE_SIZE=128
-
- x = numpy.arange(0, WAVETABLE_SIZE + 1) / float(WAVETABLE_SIZE)
- x[-1] = x[0]
- sine = numpy.sin(2 * numpy.pi * x)
- waveforms.append(('sine128', (32767 * sine).astype(int)))
-
- WAVETABLE_SIZE=64
-
- x = numpy.arange(0, WAVETABLE_SIZE + 1) / float(WAVETABLE_SIZE)
- x[-1] = x[0]
- sine = numpy.sin(2 * numpy.pi * x)
- waveforms.append(('sine64', (32767 * sine).astype(int)))
-
- WAVETABLE_SIZE=16
-
- x = numpy.arange(0, WAVETABLE_SIZE + 1) / float(WAVETABLE_SIZE)
- x[-1] = x[0]
- sine = numpy.sin(2 * numpy.pi * x)
- waveforms.append(('sine16', (32767 * sine).astype(int)))
-
- """----------------------------------------------------------------------------
- Band-limited waveforms
- ----------------------------------------------------------------------------"""
-
- SAMPLE_RATE = 48000.0
- WAVETABLE_SIZE = 1024
-
- def dither(x, order=0, type=numpy.int16):
- for i in xrange(order):
- x = numpy.hstack((numpy.zeros(1,), numpy.cumsum(x)))
- x = numpy.round(x)
- for i in xrange(order):
- x = numpy.diff(x)
- if any(x < numpy.iinfo(type).min) or any(x > numpy.iinfo(type).max):
- print 'Clipping occurred!'
- x[x < numpy.iinfo(type).min] = numpy.iinfo(type).min
- x[x > numpy.iinfo(type).max] = numpy.iinfo(type).max
- return x.astype(type)
-
-
- def scale(array, min=-32766, max=32766, center=True, dither_level=2):
- if center:
- array -= array.mean()
- mx = numpy.abs(array).max()
- array = (array + mx) / (2 * mx)
- array = array * (max - min) + min
- return dither(array, order=dither_level)
-
-
- # Band limited waveforms.
- num_zones = 20
- bl_parabola_tables = []
-
- wrap = numpy.arange(WAVETABLE_SIZE + 1) + WAVETABLE_SIZE / 2
- wrap = numpy.fmod(wrap, WAVETABLE_SIZE)
-
- quadrature = numpy.arange(WAVETABLE_SIZE + 1) + WAVETABLE_SIZE / 4
- quadrature = numpy.fmod(quadrature, WAVETABLE_SIZE)
-
- fill = numpy.arange(WAVETABLE_SIZE + 1)
- fill = numpy.fmod(fill, WAVETABLE_SIZE)
-
- ref_f0_energy = None
-
- for zone in range(num_zones):
- f0 = 440.0 * 2.0 ** ((8 + 8 * zone - 69) / 12.0)
- f0 = min(f0, SAMPLE_RATE / 2.0)
- period = SAMPLE_RATE / f0
- m = 2 * numpy.floor(period / 2) + 1.0
- i = numpy.arange(-WAVETABLE_SIZE / 2, WAVETABLE_SIZE / 2) / \
- float(WAVETABLE_SIZE)
-
- pulse = numpy.sin(numpy.pi * i * m) / (m * numpy.sin(numpy.pi * i) + 1e-9)
- pulse[WAVETABLE_SIZE / 2] = 1.0
- pulse = pulse[fill]
-
- square = numpy.cumsum(pulse - pulse[wrap])
- triangle = -numpy.cumsum(square[::-1] - square.mean()) / WAVETABLE_SIZE
- saw = -numpy.cumsum(pulse[wrap] - pulse.mean())
- parabola = numpy.cumsum(saw - saw.mean())
- scaled_parabola = scale(parabola[quadrature])
- f0_energy = numpy.abs(numpy.fft.rfft(scaled_parabola)[1])
- if ref_f0_energy is None:
- ref_f0_energy = f0_energy
- scaled_parabola = scaled_parabola / f0_energy * ref_f0_energy
- scaled_parabola *= min(1.0, 32767 / scaled_parabola.max())
- bl_parabola_tables.append(
- ('bandlimited_parabola_%d' % zone, scaled_parabola))
-
- waveforms.extend(bl_parabola_tables)
-
-
-
- """----------------------------------------------------------------------------
- Waveshaper for audio rate
- ----------------------------------------------------------------------------"""
-
- WAVESHAPER_SIZE = 1024
-
- x = numpy.arange(0, WAVESHAPER_SIZE + 1) / float(WAVESHAPER_SIZE)
-
- linear = x
- sin = (1.0 - numpy.cos(numpy.pi * x)) / 2.0
- tan = numpy.arctan(8 * numpy.cos(numpy.pi * x))
- scale = tan.max()
- tan = (1.0 - tan / scale) / 2.0
- inverse_sin = numpy.arccos(1 - 2 * x) / numpy.pi
- inverse_tan = numpy.arccos(numpy.tan(scale * (1.0 - 2.0 * x)) / 8.0) / numpy.pi
-
- def audio_rate_flip(x):
- x = numpy.array(list(-x[WAVESHAPER_SIZE:0:-1]) + list(x))
- return numpy.round((x * 32767.0)).astype(int)
-
- audio_rate_tables = []
- audio_rate_tables.append(('inverse_tan_audio', audio_rate_flip(inverse_tan)))
- audio_rate_tables.append(('inverse_sin_audio', audio_rate_flip(inverse_sin)))
- audio_rate_tables.append(('linear_audio', audio_rate_flip(linear)))
- audio_rate_tables.append(('sin_audio', audio_rate_flip(sin)))
- audio_rate_tables.append(('tan_audio', audio_rate_flip(tan)))
- waveforms.extend(audio_rate_tables)
-
-
-
- """----------------------------------------------------------------------------
- Waveshaper for control rate
- ----------------------------------------------------------------------------"""
-
- WAVESHAPER_SIZE = 512
-
- x = numpy.arange(0, WAVESHAPER_SIZE + 1) / float(WAVESHAPER_SIZE)
-
- linear = x
- sin = (1.0 - numpy.cos(numpy.pi * x)) / 2.0
- inverse_sin = numpy.arccos(1 - 2 * x) / numpy.pi
- inverse_sin = (((inverse_sin*2-1) ** 3)+1)*0.5 # for more contrast
- expo = 1.0 - numpy.exp(-3 * x)
- expo_max = expo.max()
- expo = 1.0 - (1.0 - expo) ** 2 # for more contrast
- expo /= expo.max()
-
- expo_flipped = 1.0 - numpy.exp(-3 * (1 - x))
- expo_flipped = 1.0 - (1.0 - expo_flipped) ** 2 # for more contrast
- expo_flipped /= expo_flipped.max()
- log = numpy.log(1.0 - x * expo_max) / -3.0
- log -= log.min()
- log /= log.max()
- log = log ** 2 # for more contrast
- log_flipped = numpy.log(1.0 - (1 - x) * expo_max) / -3.0
- log_flipped -= log_flipped.min()
- log_flipped /= log_flipped.max()
- log_flipped = log_flipped ** 2 # for more contrast
-
- def control_rate_flip(x, y):
- x = numpy.array(list(x) + list(y[1:]))
- return numpy.round((x * 32767.0)).astype(int)
-
- control_rate_tables = []
- control_rate_tables.append(
- ('reversed_control', control_rate_flip(log, 1.0 - log)))
- control_rate_tables.append(
- ('spiky_exp_control', control_rate_flip(log, log_flipped)))
- control_rate_tables.append(
- ('spiky_control', control_rate_flip(inverse_sin, 1.0 - inverse_sin)))
- control_rate_tables.append(
- ('linear_control', control_rate_flip(linear, 1.0 - linear)))
- control_rate_tables.append(
- ('bump_control', control_rate_flip(sin, 1.0 - sin)))
- control_rate_tables.append(
- ('bump_exp_control', control_rate_flip(expo, expo_flipped)))
- control_rate_tables.append(
- ('normal_control', control_rate_flip(expo, 1.0 - expo)))
- waveforms.extend(control_rate_tables)
-
-
-
- """----------------------------------------------------------------------------
- Post waveshaper
- ----------------------------------------------------------------------------"""
-
- WAVESHAPER_SIZE = 1024
-
- x = numpy.arange(0, WAVESHAPER_SIZE + 1) / (WAVESHAPER_SIZE / 2.0) - 1.0
- x[-1] = x[-2]
- sine = numpy.sin(8 * numpy.pi * x)
- window = numpy.exp(-x * x * 4) ** 2
- bipolar_fold = sine * window + numpy.arctan(3 * x) * (1 - window)
- bipolar_fold /= numpy.abs(bipolar_fold).max()
- waveforms.append(('bipolar_fold', numpy.round(32767 * bipolar_fold)))
-
- x = numpy.arange(0, WAVESHAPER_SIZE + 1) / float(WAVESHAPER_SIZE)
- x[-1] = x[-2]
- sine = numpy.sin(8 * numpy.pi * x)
- window = numpy.exp(-x * x * 4) ** 2
- unipolar_fold = (0.5 * sine + 2 * x) * window + numpy.arctan(4 * x) * (1 - window)
- unipolar_fold /= numpy.abs(unipolar_fold).max()
- waveforms.append(('unipolar_fold', numpy.round(32767 * unipolar_fold)))
|