|
- #!/usr/bin/python2.5
- #
- # Copyright 2014 Olivier Gillet.
- #
- # Author: Olivier Gillet (ol.gillet@gmail.com)
- #
- # Permission is hereby granted, free of charge, to any person obtaining a copy
- # of this software and associated documentation files (the "Software"), to deal
- # in the Software without restriction, including without limitation the rights
- # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- # copies of the Software, and to permit persons to whom the Software is
- # furnished to do so, subject to the following conditions:
- #
- # The above copyright notice and this permission notice shall be included in
- # all copies or substantial portions of the Software.
- #
- # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
- # THE SOFTWARE.
- #
- # See http://creativecommons.org/licenses/MIT/ for more information.
- #
- # -----------------------------------------------------------------------------
- #
- # Lookup table definitions.
-
- import numpy
-
- """----------------------------------------------------------------------------
- LFO and envelope increments.
- ----------------------------------------------------------------------------"""
-
- lookup_tables = []
- lookup_tables_32 = []
-
- sample_rate = 31089
- excursion = 1 << 32
- num_values = 257
-
- # Create lookup table for envelope times (x^0.25).
- max_time = 12.0 # seconds
- min_time = 0.0005
- gamma = 0.25
- min_increment = excursion / (max_time * sample_rate)
- max_increment = excursion / (min_time * sample_rate)
-
- rates = numpy.linspace(numpy.power(max_increment, -gamma),
- numpy.power(min_increment, -gamma), num_values)
-
- values = numpy.power(rates, -1/gamma).astype(int)
- lookup_tables_32.append(
- ('env_increments', values)
- )
-
-
-
- """----------------------------------------------------------------------------
- Envelope curves
- -----------------------------------------------------------------------------"""
-
- env_linear = numpy.arange(0, 257.0) / 256.0
- env_linear[-1] = env_linear[-2]
- env_quartic = env_linear ** 3.32
- env_expo = 1.0 - numpy.exp(-4 * env_linear)
-
- lookup_tables.append(('env_linear', env_linear / env_linear.max() * 65535.0))
- lookup_tables.append(('env_expo', env_expo / env_expo.max() * 65535.0))
- lookup_tables.append(('env_quartic', env_quartic / env_quartic.max() * 65535.0))
- lookup_tables.append(('square_root', (env_linear ** 0.5) * 65535.0))
-
-
-
- """----------------------------------------------------------------------------
- SVF coefficients
- ----------------------------------------------------------------------------"""
-
- cutoff = 440.0 * 2 ** ((numpy.arange(0, 257) - 69) / 12.0)
- f = cutoff / sample_rate
- f[f > 1 / 8.0] = 1 / 8.0
- f = 2 * numpy.sin(numpy.pi * f)
- resonance = numpy.arange(0, 257) / 257.0
- damp = numpy.minimum(2 * (1 - resonance ** 0.25),
- numpy.minimum(2, 2 / f - f * 0.5))
-
- lookup_tables.append(
- ('svf_cutoff', f * 32767.0)
- )
-
- lookup_tables.append(
- ('svf_damp', damp * 32767.0)
- )
-
-
-
- """----------------------------------------------------------------------------
- Vactrol attack/decay time
- ----------------------------------------------------------------------------"""
-
- vactrol_time = 0.001 * 10 ** (numpy.arange(0, 128 * 5) / 128.0)
- vactrol_time[0] = 0.0001
- vactrol_time[1] = 0.0002
- vactrol_time[2] = 0.0005
- vactrol_time[3] = 0.001
- filter_coefficients = 1.0 - numpy.exp(-1 / (vactrol_time * sample_rate))
- lookup_tables_32.append(
- ('lp_coefficients', excursion / 2 * filter_coefficients)
- )
-
-
-
- """----------------------------------------------------------------------------
- 2164 gain
- ----------------------------------------------------------------------------"""
-
- gains = (numpy.arange(0, 257) / 256.0) * 3.3
- gains =10 ** (-1.5 * gains)
- lookup_tables.append(
- ('2164_gain', gains * 32767.0)
- )
-
-
-
- """----------------------------------------------------------------------------
- Compressor tables
- ----------------------------------------------------------------------------"""
-
- t = (numpy.arange(0, 257) / 256.0)
- lookup_tables_32 += [
- ('exp2', 65536.0 * 2 ** t),
- ('log2', 65536.0 * numpy.log2(256 + 256 * t))]
-
- lookup_tables += [
- ('compressor_ratio', 256 / (24 * t * t + 1)),
- ('soft_knee', (t ** 3.0) * 65535.0)
- ]
-
-
-
- """----------------------------------------------------------------------------
- Rate control
- ----------------------------------------------------------------------------"""
-
- t = numpy.arange(0, 257) / 256.0
- t /= (20 / 100.0 / 3.3)
- f = 2.0 ** t
- f /= f[-1]
- f *= 0.02 * (1 << 24)
-
- lookup_tables_32.append(('lorenz_rate', f))
|