|
- #!/usr/bin/python2.5
- #
- # Copyright 2014 Olivier Gillet.
- #
- # Author: Olivier Gillet (ol.gillet@gmail.com)
- #
- # Permission is hereby granted, free of charge, to any person obtaining a copy
- # of this software and associated documentation files (the "Software"), to deal
- # in the Software without restriction, including without limitation the rights
- # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- # copies of the Software, and to permit persons to whom the Software is
- # furnished to do so, subject to the following conditions:
- #
- # The above copyright notice and this permission notice shall be included in
- # all copies or substantial portions of the Software.
- #
- # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
- # THE SOFTWARE.
- #
- # See http://creativecommons.org/licenses/MIT/ for more information.
- #
- # -----------------------------------------------------------------------------
- #
- # Lookup table definitions.
-
- import numpy
-
- """----------------------------------------------------------------------------
- LFO and envelope increments.
- ----------------------------------------------------------------------------"""
-
- lookup_tables = []
- lookup_tables_32 = []
-
- sample_rate = 48000
- min_frequency = 1.0 / 32.0 # Hertz
- max_frequency = 160.0 # Hertz
-
- excursion = 1 << 32
- num_values = 257
- min_increment = excursion * min_frequency / sample_rate
- max_increment = excursion * max_frequency / sample_rate
-
- rates = numpy.linspace(numpy.log(min_increment),
- numpy.log(max_increment), num_values)
- lookup_tables_32.append(
- ('lfo_increments', numpy.exp(rates).astype(int))
- )
-
- # Create lookup table for envelope times (x^0.25).
- max_time = 8.0 # seconds
- min_time = 0.0005
- gamma = 0.175
- min_increment = excursion / (max_time * sample_rate)
- max_increment = excursion / (min_time * sample_rate)
-
- rates = numpy.linspace(numpy.power(max_increment, -gamma),
- numpy.power(min_increment, -gamma), num_values)
-
- values = numpy.power(rates, -1/gamma).astype(int)
- lookup_tables_32.append(
- ('env_increments', values)
- )
-
- # Create table for pitch.
- a4_midi = 69
- a4_pitch = 440.0
- highest_octave = 116
- notes = numpy.arange(
- highest_octave * 128.0,
- (highest_octave + 12) * 128.0 + 16,
- 16)
- pitches = a4_pitch * 2 ** ((notes - a4_midi * 128) / (128 * 12))
- increments = excursion / sample_rate * pitches
-
- lookup_tables_32.append(
- ('oscillator_increments', increments.astype(int)))
-
-
- """----------------------------------------------------------------------------
- Pulse delay values.
- ----------------------------------------------------------------------------"""
-
- sample_rate = 48000 / 8
- min_delay = 0.001
- max_delay = 10.0
- gamma = 0.3
- times = numpy.linspace(numpy.power(min_delay, gamma),
- numpy.power(max_delay, gamma), num_values)
- times = numpy.power(times, 1 / gamma)
- lookup_tables.append(
- ('delay_times', (times * sample_rate).astype(int))
- )
-
-
-
- """----------------------------------------------------------------------------
- Gravity factors.
- ----------------------------------------------------------------------------"""
-
- sample_rate = 48000
- min_delay = 0.015
- max_delay = 2.0
- gamma = 0.2
- times = numpy.linspace(numpy.power(min_delay, gamma),
- numpy.power(max_delay, gamma), num_values)
- times = numpy.power(times, 1 / gamma)
- lookup_tables.append(
- ('gravity', ((times * sample_rate / (2 * 65536.0)) ** -2).astype(int))
- )
-
-
- """----------------------------------------------------------------------------
- Envelope curves
- -----------------------------------------------------------------------------"""
-
- env_linear = numpy.arange(0, 257.0) / 256.0
- env_linear[-1] = env_linear[-2]
- env_quartic = env_linear ** 3.32
- env_expo = 1.0 - numpy.exp(-4 * env_linear)
-
- lookup_tables.append(('env_linear', env_linear / env_linear.max() * 65535.0))
- lookup_tables.append(('env_expo', env_expo / env_expo.max() * 65535.0))
- lookup_tables.append(('env_quartic', env_quartic / env_quartic.max() * 65535.0))
-
- raised_cosine = 0.5 - numpy.cos(env_linear * numpy.pi) / 2
- lookup_tables.append(('raised_cosine', raised_cosine * 65535.0))
-
-
-
- """----------------------------------------------------------------------------
- SVF coefficients
- ----------------------------------------------------------------------------"""
-
- cutoff = 440.0 * 2 ** ((numpy.arange(0, 257) - 69) / 12.0)
- f = cutoff / sample_rate
- f[f > 1 / 8.0] = 1 / 8.0
- f = 2 * numpy.sin(numpy.pi * f)
- resonance = numpy.arange(0, 257) / 257.0
- damp = numpy.minimum(2 * (1 - resonance ** 0.25),
- numpy.minimum(2, 2 / f - f * 0.5))
-
- lookup_tables.append(
- ('svf_cutoff', f * 32767.0)
- )
-
- lookup_tables.append(
- ('svf_damp', damp * 32767.0)
- )
-
- lookup_tables.append(
- ('svf_scale', ((damp / 2) ** 0.5) * 32767.0)
- )
|