// Copyright 2013 Olivier Gillet. // // Author: Olivier Gillet (ol.gillet@gmail.com) // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. // // See http://creativecommons.org/licenses/MIT/ for more information. // // ----------------------------------------------------------------------------- // // Tidal generator. #ifndef TIDES_GENERATOR_H_ #define TIDES_GENERATOR_H_ #include "stmlib/stmlib.h" #include "stmlib/algorithms/pattern_predictor.h" #include "stmlib/utils/ring_buffer.h" // #define WAVETABLE_HACK namespace tides { enum GeneratorRange { GENERATOR_RANGE_HIGH, GENERATOR_RANGE_MEDIUM, GENERATOR_RANGE_LOW }; enum GeneratorMode { GENERATOR_MODE_AD, GENERATOR_MODE_LOOPING, GENERATOR_MODE_AR, }; enum ControlBitMask { CONTROL_FREEZE = 1, CONTROL_GATE = 2, CONTROL_CLOCK = 4, CONTROL_CLOCK_RISING = 8, CONTROL_GATE_RISING = 16, CONTROL_GATE_FALLING = 32 }; enum FlagBitMask { FLAG_END_OF_ATTACK = 1, FLAG_END_OF_RELEASE = 2 }; struct GeneratorSample { uint16_t unipolar; int16_t bipolar; uint8_t flags; }; const uint16_t kBlockSize = 16; struct FrequencyRatio { uint32_t p; uint32_t q; }; class Generator { public: Generator() { } ~Generator() { } void Init(); void set_range(GeneratorRange range) { ClearFilterState(); range_ = range; clock_divider_ = /* harmonic oscillator is sampled at 24kHz */ feature_mode_ == FEAT_MODE_HARMONIC ? 2 : range_ == GENERATOR_RANGE_LOW ? 4 : 1; } void set_mode(GeneratorMode mode) { mode_ = mode; if (mode_ == GENERATOR_MODE_LOOPING) { running_ = true; } } void set_pitch_high_range(int16_t pitch, int16_t fm) { if (sync_) { ComputeFrequencyRatio(pitch); } pitch_ = pitch + (12 << 7) + fm; } void set_pitch(int16_t pitch, int16_t fm) { if (sync_) { ComputeFrequencyRatio(pitch); } pitch += (12 << 7) - (60 << 7) * static_cast(range_); if (range_ == GENERATOR_RANGE_LOW) { pitch -= (12 << 7); // One extra octave of super LF stuff! } pitch_ = pitch + fm; } void set_shape(int16_t shape) { shape_ = shape; } void set_slope(int16_t slope) { #ifndef WAVETABLE_HACK if (range_ == GENERATOR_RANGE_HIGH && feature_mode_ != FEAT_MODE_HARMONIC) { CONSTRAIN(slope, -32512, 32512); } #endif // WAVETABLE_HACK slope_ = slope; } void set_smoothness(int16_t smoothness) { smoothness_ = smoothness; } void set_frequency_ratio(FrequencyRatio ratio) { frequency_ratio_ = ratio; } void set_waveshaper_antialiasing(bool antialiasing) { antialiasing_ = antialiasing; } void set_sync(bool sync) { if (!sync_ && sync) { pattern_predictor_.Init(); } sync_ = sync; sync_edges_counter_ = 0; } void set_pulse_width(uint16_t pw) { pulse_width_ = pw; } inline GeneratorMode mode() const { return mode_; } inline GeneratorRange range() const { return range_; } inline bool sync() const { return sync_; } inline GeneratorSample Process(uint8_t control) { input_buffer_.Overwrite(control); return output_buffer_.ImmediateRead(); } inline bool writable_block() const { return output_buffer_.writable() >= kBlockSize; } inline bool FillBufferSafe() { if (!writable_block()) { return false; } else { FillBuffer(); return true; } } void FillBuffer(); uint32_t clock_divider() const { return clock_divider_; } enum FeatureMode { FEAT_MODE_FUNCTION, FEAT_MODE_HARMONIC, FEAT_MODE_RANDOM, }; FeatureMode feature_mode_; private: // There are two versions of the rendering code, one optimized for audio, with // band-limiting. void FillBufferAudioRate(); void FillBufferControlRate(); void FillBufferWavetable(); template void FillBufferHarmonic(); void FillBufferRandom(); int32_t ComputeAntialiasAttenuation( int16_t pitch, int16_t slope, int16_t shape, int16_t smoothness); inline void ClearFilterState() { uni_lp_state_[0] = uni_lp_state_[1] = 0; bi_lp_state_[0] = bi_lp_state_[1] = 0; } int32_t ComputePhaseIncrement(int16_t pitch); int16_t ComputePitch(int32_t phase_increment); int32_t ComputeCutoffFrequency(int16_t pitch, int16_t smoothness); void ComputeFrequencyRatio(int16_t pitch); stmlib::RingBuffer input_buffer_; stmlib::RingBuffer output_buffer_; GeneratorMode mode_; GeneratorRange range_; GeneratorSample previous_sample_; uint32_t clock_divider_; int16_t pitch_; int16_t previous_pitch_; int16_t shape_; int16_t slope_; int32_t smoothed_slope_; int16_t smoothness_; bool antialiasing_; uint16_t final_gain_; uint32_t phase_; int32_t phase_increment_; uint32_t sub_phase_; uint16_t x_; uint16_t y_; uint16_t z_; bool wrap_; uint16_t pulse_width_; uint32_t divided_phase_; uint32_t divider_; uint32_t divider_counter_; uint32_t delayed_phase_; int32_t delayed_phase_increment_; uint32_t delay_; uint32_t delay_counter_; int16_t previous_slope_; uint32_t delayed_threshold_; uint16_t current_value_[2]; uint16_t next_value_[2]; bool walk_direction_[2]; uint16_t value_[2]; int16_t old_slope_; int16_t old_pitch_; bool sync_; FrequencyRatio frequency_ratio_; // Time measurement and clock divider for PLL mode. uint32_t sync_counter_; uint32_t sync_edges_counter_; uint32_t local_osc_phase_; int32_t local_osc_phase_increment_; int32_t target_phase_increment_; uint32_t eor_counter_; stmlib::PatternPredictor<32, 8> pattern_predictor_; int64_t uni_lp_state_[2]; int64_t bi_lp_state_[2]; bool running_; bool previous_freeze_; bool previous_clock_; static const FrequencyRatio frequency_ratios_[]; static const int16_t num_frequency_ratios_; static const uint8_t kNumHarmonics = 16; static const uint8_t kNumHarmonicsPowers = 12; uint16_t envelope_[kNumHarmonics]; uint16_t envelope_increment_[kNumHarmonics]; uint8_t harm_permut_[kNumHarmonics]; void RandomizeDelay(); void RandomizeDivider(); void RandomizeHarmonicPhase(); void RandomizeHarmonicDistribution(); DISALLOW_COPY_AND_ASSIGN(Generator); }; } // namespace tides #endif // TIDES_GENERATOR_H_