// Copyright 2013 Olivier Gillet. // // Author: Olivier Gillet (ol.gillet@gmail.com) // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. // // See http://creativecommons.org/licenses/MIT/ for more information. // // ----------------------------------------------------------------------------- // // CV scaling functions. #ifndef TIDES_CV_SCALER_H_ #define TIDES_CV_SCALER_H_ #include "stmlib/stmlib.h" #include "stmlib/utils/dsp.h" #include "tides/resources.h" namespace tides { const int16_t kOctave = 12 * 128; #define SE * 128 const uint16_t quantize_lut[7][12] = { /* semitones */ {0, 1 SE, 2 SE, 3 SE, 4 SE, 5 SE, 6 SE, 7 SE, 8 SE, 9 SE, 10 SE, 11 SE}, /* ionian */ {0, 0, 2 SE, 2 SE, 4 SE, 5 SE, 5 SE, 7 SE, 7 SE, 9 SE, 9 SE, 11 SE}, /* aeolian */ {0, 0, 2 SE, 3 SE, 3 SE, 5 SE, 5 SE, 7 SE, 8 SE, 8 SE, 10 SE, 10 SE}, /* whole tones */ {0, 0, 2 SE, 2 SE, 4 SE, 4 SE, 6 SE, 6 SE, 8 SE, 8 SE, 10 SE, 10 SE}, /* pentatonic minor */ {0, 0, 3 SE, 3 SE, 3 SE, 5 SE, 5 SE, 7 SE, 7 SE, 10 SE, 10 SE, 10 SE}, /* pent-3 */ {0, 0, 0, 0, 7 SE, 7 SE, 7 SE, 7 SE, 10 SE, 10 SE, 10 SE, 10 SE}, /* fifths */ {0, 0, 0, 0, 0, 0, 7 SE, 7 SE, 7 SE, 7 SE, 7 SE, 7 SE}, }; enum AdcChannel { ADC_CHANNEL_LEVEL, ADC_CHANNEL_V_OCT, ADC_CHANNEL_FM, ADC_CHANNEL_FM_ATTENUVERTER, ADC_CHANNEL_SHAPE, ADC_CHANNEL_SLOPE, ADC_CHANNEL_SMOOTHNESS, ADC_CHANNEL_LAST }; class CvScaler { public: struct CalibrationData { int32_t level_offset; int32_t v_oct_offset; int32_t v_oct_scale; int32_t fm_offset; int32_t fm_scale; int32_t padding[3]; }; CvScaler() { } ~CvScaler() { } void Init(); inline void ProcessSampleRate(const uint16_t* raw_adc_data) { level_raw_ = (level_raw_ * 15 + raw_adc_data[ADC_CHANNEL_LEVEL]) >> 4; level_ = -level_raw_ + calibration_data_.level_offset; if (level_ < 32) { // 2 LSB of ADC noise. level_ = 0; } } inline void ProcessControlRate(const uint16_t* raw_adc_data) { int32_t scaled_value; scaled_value = 32767 - static_cast( raw_adc_data[ADC_CHANNEL_SHAPE]); shape_ = (shape_ * 7 + scaled_value) >> 3; scaled_value = 32767 - static_cast( raw_adc_data[ADC_CHANNEL_SLOPE]); slope_ = (slope_ * 7 + scaled_value) >> 3; scaled_value = 32767 - static_cast( raw_adc_data[ADC_CHANNEL_SMOOTHNESS]); smoothness_ = (smoothness_ * 7 + scaled_value) >> 3; scaled_value = static_cast(raw_adc_data[ADC_CHANNEL_V_OCT]); v_oct_ = (v_oct_ * 3 + scaled_value) >> 2; scaled_value = static_cast(raw_adc_data[ADC_CHANNEL_FM]); fm_ = (fm_ * 3 + scaled_value) >> 2; scaled_value = static_cast( raw_adc_data[ADC_CHANNEL_FM_ATTENUVERTER]); attenuverter_ = (attenuverter_ * 15 + scaled_value) >> 4; } inline uint16_t level() const { return level_; } inline int16_t shape() const { return shape_; } inline int16_t slope() const { return slope_; } inline int16_t smoothness() const { return smoothness_; } inline int16_t pitch() { if (quantize_) { // Apply hysteresis and filtering to ADC reading to prevent // jittery quantization. if ((v_oct_ > previous_v_oct_ + 16) || (v_oct_ < previous_v_oct_ - 16)) { previous_v_oct_ = v_oct_; } else { previous_v_oct_ += (v_oct_ - previous_v_oct_) >> 5; v_oct_ = previous_v_oct_; } } int32_t pitch = (v_oct_ - calibration_data_.v_oct_offset) * \ calibration_data_.v_oct_scale >> 15; pitch += 60 << 7; if (quantize_) { uint16_t semi = pitch >> 7; uint16_t octaves = semi / 12 ; semi -= octaves * 12; pitch = octaves * kOctave + quantize_lut[quantize_ - 1][semi]; } return pitch; } inline int16_t fm() { int32_t attenuverter_value = attenuverter_ - 32768; int32_t attenuverter_sign = 1; if (attenuverter_value < 0) { attenuverter_value = -attenuverter_value - 1; attenuverter_sign = - 1; } attenuverter_value = attenuverter_sign * static_cast( stmlib::Interpolate88(lut_attenuverter_curve, attenuverter_value << 1)); int32_t fm = (fm_ - calibration_data_.fm_offset) * \ calibration_data_.fm_scale >> 15; fm = fm * attenuverter_value >> 16; return fm; } inline uint16_t raw_attenuverter() const { return attenuverter_; } void CaptureCalibrationValues() { v_oct_c2_ = v_oct_; } void Calibrate(); inline bool can_enter_calibration() const { return level_raw_ >= 49152; } uint8_t quantize_; private: void SaveCalibrationData(); CalibrationData calibration_data_; int32_t level_raw_; int32_t level_; int32_t v_oct_; int32_t previous_v_oct_; int32_t fm_; int32_t attenuverter_; int32_t shape_; int32_t slope_; int32_t smoothness_; int32_t v_oct_c2_; static const CalibrationData init_calibration_data_; uint16_t version_token_; DISALLOW_COPY_AND_ASSIGN(CvScaler); }; } // namespace tides #endif // TIDES_CV_SCALER_H_