// Copyright 2011 Olivier Gillet.
//
// Author: Olivier Gillet (ol.gillet@gmail.com)
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see .
//
// -----------------------------------------------------------------------------
//
// Global clock.
#include "grids/pattern_generator.h"
#include
#include
#include "avrlib/op.h"
#include "grids/resources.h"
namespace grids {
using namespace avrlib;
/* static */
Options PatternGenerator::options_;
/* static */
uint8_t PatternGenerator::pulse_;
/* static */
uint8_t PatternGenerator::step_;
/* static */
bool PatternGenerator::first_beat_;
/* static */
bool PatternGenerator::beat_;
/* static */
uint8_t PatternGenerator::euclidean_step_[kNumParts];
/* static */
uint8_t PatternGenerator::state_;
/* static */
uint8_t PatternGenerator::pulse_duration_counter_;
/* static */
uint8_t PatternGenerator::part_perturbation_[kNumParts];
/* static */
PatternGeneratorSettings PatternGenerator::settings_;
/* static */
uint8_t PatternGenerator::factory_testing_;
/* extern */
PatternGenerator pattern_generator;
static const prog_uint8_t* drum_map[5][5] = {
{ node_10, node_8, node_0, node_9, node_11 },
{ node_15, node_7, node_13, node_12, node_6 },
{ node_18, node_14, node_4, node_5, node_3 },
{ node_23, node_16, node_21, node_1, node_2 },
{ node_24, node_19, node_17, node_20, node_22 },
};
/* static */
uint8_t PatternGenerator::ReadDrumMap(
uint8_t step,
uint8_t instrument,
uint8_t x,
uint8_t y) {
uint8_t i = x >> 6;
uint8_t j = y >> 6;
const prog_uint8_t* a_map = drum_map[i][j];
const prog_uint8_t* b_map = drum_map[i + 1][j];
const prog_uint8_t* c_map = drum_map[i][j + 1];
const prog_uint8_t* d_map = drum_map[i + 1][j + 1];
uint8_t offset = (instrument * kStepsPerPattern) + step;
uint8_t a = pgm_read_byte(a_map + offset);
uint8_t b = pgm_read_byte(b_map + offset);
uint8_t c = pgm_read_byte(c_map + offset);
uint8_t d = pgm_read_byte(d_map + offset);
return U8Mix(U8Mix(a, b, x << 2), U8Mix(c, d, x << 2), y << 2);
}
/* static */
void PatternGenerator::EvaluateDrums() {
// At the beginning of a pattern, decide on perturbation levels.
if (step_ == 0) {
for (uint8_t i = 0; i < kNumParts; ++i) {
uint8_t randomness = options_.swing
? 0 : settings_.options.drums.randomness >> 2;
part_perturbation_[i] = U8U8MulShift8(Random::GetByte(), randomness);
}
}
uint8_t instrument_mask = 1;
uint8_t x = settings_.options.drums.x;
uint8_t y = settings_.options.drums.y;
uint8_t accent_bits = 0;
for (uint8_t i = 0; i < kNumParts; ++i) {
uint8_t level = ReadDrumMap(step_, i, x, y);
if (level < 255 - part_perturbation_[i]) {
level += part_perturbation_[i];
} else {
// The sequencer from Anushri uses a weird clipping rule here. Comment
// this line to reproduce its behavior.
level = 255;
}
uint8_t threshold = ~settings_.density[i];
if (level > threshold) {
if (level > 192) {
accent_bits |= instrument_mask;
}
state_ |= instrument_mask;
}
instrument_mask <<= 1;
}
if (output_clock()) {
state_ |= accent_bits ? OUTPUT_BIT_COMMON : 0;
state_ |= step_ == 0 ? OUTPUT_BIT_RESET : 0;
} else {
state_ |= accent_bits << 3;
}
}
/* static */
void PatternGenerator::EvaluateEuclidean() {
// Refresh only on sixteenth notes.
if (step_ & 1) {
return;
}
// Euclidean pattern generation
uint8_t instrument_mask = 1;
uint8_t reset_bits = 0;
for (uint8_t i = 0; i < kNumParts; ++i) {
uint8_t length = (settings_.options.euclidean_length[i] >> 3) + 1;
uint8_t density = settings_.density[i] >> 3;
uint16_t address = U8U8Mul(length - 1, 32) + density;
while (euclidean_step_[i] >= length) {
euclidean_step_[i] -= length;
}
uint32_t step_mask = 1L << static_cast(euclidean_step_[i]);
uint32_t pattern_bits = pgm_read_dword(lut_res_euclidean + address);
if (pattern_bits & step_mask) {
state_ |= instrument_mask;
}
if (euclidean_step_[i] == 0) {
reset_bits |= instrument_mask;
}
instrument_mask <<= 1;
}
if (output_clock()) {
state_ |= reset_bits ? OUTPUT_BIT_COMMON : 0;
state_ |= (reset_bits == 0x07) ? OUTPUT_BIT_RESET : 0;
} else {
state_ |= reset_bits << 3;
}
}
/* static */
void PatternGenerator::LoadSettings() {
options_.unpack(eeprom_read_byte(NULL));
factory_testing_ = eeprom_read_byte((uint8_t*)(1)) + 1;
}
/* static */
void PatternGenerator::SaveSettings() {
eeprom_write_byte(NULL, options_.pack());
++factory_testing_;
if (factory_testing_ >= 5) {
factory_testing_ = 5;
}
eeprom_write_byte((uint8_t*)(1), factory_testing_);
}
/* static */
void PatternGenerator::Evaluate() {
state_ = 0;
pulse_duration_counter_ = 0;
Random::Update();
// Highest bits: clock and random bit.
state_ |= 0x40;
state_ |= Random::state() & 0x80;
if (output_clock()) {
state_ |= OUTPUT_BIT_CLOCK;
}
// Refresh only at step changes.
if (pulse_ != 0) {
return;
}
if (options_.output_mode == OUTPUT_MODE_EUCLIDEAN) {
EvaluateEuclidean();
} else {
EvaluateDrums();
}
}
/* static */
int8_t PatternGenerator::swing_amount() {
if (options_.swing && output_mode() == OUTPUT_MODE_DRUMS) {
int8_t value = U8U8MulShift8(settings_.options.drums.randomness, 42 + 1);
return (!(step_ & 2)) ? value : -value;
} else {
return 0;
}
}
} // namespace grids