// Copyright 2013 Olivier Gillet. // // Author: Olivier Gillet (ol.gillet@gmail.com) // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. // // See http://creativecommons.org/licenses/MIT/ for more information. #include #include "stmlib/system/system_clock.h" #include "stmlib/utils/random.h" #include "frames/drivers/dac.h" #include "frames/drivers/system.h" #include "frames/drivers/trigger_output.h" #include "frames/keyframer.h" #include "frames/poly_lfo.h" #include "frames/euclidean.h" #include "frames/ui.h" using namespace frames; using namespace stmlib; Dac dac; Keyframer keyframer; PolyLfo poly_lfo; Euclidean euclidean[kNumChannels]; System sys; TriggerOutput trigger_output; Ui ui; // Default interrupt handlers. extern "C" { void HardFault_Handler() { while (1); } void MemManage_Handler() { while (1); } void BusFault_Handler() { while (1); } void UsageFault_Handler() { while (1); } void NMI_Handler() { } void SVC_Handler() { } void DebugMon_Handler() { } void PendSV_Handler() { } } extern "C" { void SysTick_Handler() { system_clock.Tick(); // Tick global ms counter. ui.Poll(); } volatile uint16_t refresh = 0; static uint16_t factory_testing_timer = 0; static int16_t previous_position = -2; static int16_t previous_nearest_keyframe = -2; static uint16_t pulse_counter; static bool can_fire_trigger = false; static const uint16_t kPulseDuration = 128; static uint16_t counter = 0; void TIM1_UP_IRQHandler(void) { if (TIM_GetITStatus(TIM1, TIM_IT_Update) == RESET) { return; } TIM_ClearITPendingBit(TIM1, TIM_IT_Update); dac.Update(); if (dac.ready()) { ++refresh; } if (ui.feature_mode() == Ui::FEAT_MODE_KEYFRAMER || ui.feature_mode() == Ui::FEAT_MODE_KEYFRAME_LOOPER ) { int16_t position = keyframer.position(); if (previous_position != position) { previous_position = position; if (can_fire_trigger) { pulse_counter = kPulseDuration; trigger_output.High(); can_fire_trigger = false; } } } int16_t nearest_keyframe = keyframer.nearest_keyframe(); if (previous_nearest_keyframe != nearest_keyframe) { previous_nearest_keyframe = nearest_keyframe; can_fire_trigger = true; } if (ui.mode() == UI_MODE_FACTORY_TESTING) { ++factory_testing_timer; if (factory_testing_timer == 1280) { pulse_counter = kPulseDuration; trigger_output.High(); factory_testing_timer = 0; } } if (ui.feature_mode() != Ui::FEAT_MODE_POLY_LFO && pulse_counter) { --pulse_counter; if (!pulse_counter) { trigger_output.Low(); } } } } void Init() { sys.Init(F_CPU / 128000 - 1, true); dac.Init(); trigger_output.Init(); trigger_output.Low(); keyframer.Init(); poly_lfo.Init(); for (int i=0; i 0 && b > 65535 - a) { return 65535 - a - b - 1; } else if (b < 0 && a < - b) { return 65535 - a - b + 1; } else { return a + b; } } int32_t lp_frame = 0; uint32_t phase = 0; int main(void) { Init(); while (ui.mode() == UI_MODE_SPLASH) { ui.DoEvents(); } ui.TryCalibration(); bool trigger_detector_armed = false; int32_t dc_offset_frame_modulation = keyframer.dc_offset_frame_modulation(); int32_t clock_counter = 0; while (1) { ui.DoEvents(); if (refresh) { --refresh; int32_t frame = ui.frame(); int32_t frame_modulation = \ (ui.frame_modulation() - dc_offset_frame_modulation) << 1; frame += frame_modulation; if (ui.feature_mode() == Ui::FEAT_MODE_POLY_LFO) { poly_lfo.Render(frame); if (poly_lfo.level(0) > 128) { trigger_output.High(); } else { trigger_output.Low(); } dac.Write(0, poly_lfo.dac_code(0)); dac.Write(1, poly_lfo.dac_code(1)); dac.Write(2, poly_lfo.dac_code(2)); dac.Write(3, poly_lfo.dac_code(3)); } else if (ui.feature_mode() == Ui::FEAT_MODE_EUCLIDEAN) { // Render envelopes for (int i=0; i 43690 && trigger_detector_armed) { trigger_detector_armed = false; clock_counter++; // step for (int i=0; i 43690 && trigger_detector_armed) { trigger_detector_armed = false; clock_counter++; if (ui.feature_mode() == Ui::FEAT_MODE_SEQ_SHIFT_REGISTER) { // action: shift if (ui.shift_divider > 0 && clock_counter % ui.shift_divider == 0 && static_cast(Random::GetWord()) > ui.shift_random) { uint16_t temp = ui.shift_register[ui.active_registers-1]; // shift all registers one place for (int i=ui.active_registers-1; i>0; i--) ui.shift_register[i] = ui.shift_register[i-1]; // feed back last value into first, with random added if (static_cast(Random::GetWord()) > ui.feedback_random) { ui.shift_register[0] = temp; } else { int16_t rnd = static_cast(Random::GetWord()) * ui.feedback_random; ui.shift_register[0] = fold_add(temp, rnd); } // trigger pulse_counter = kPulseDuration; trigger_output.High(); } // action: step if (ui.step_divider > 0 && clock_counter % ui.step_divider == 0 && static_cast(Random::GetWord()) > ui.step_random) { ui.shift_register[0] = keyframer.level(0); int32_t max_step = keyframer.num_keyframes(); int8_t rnd = static_cast(Random::GetWord()) * ui.sequencer_random * max_step / 255 / 128 / 2; ui.sequencer_step = (ui.sequencer_step + 1 + rnd) % max_step; // trigger pulse_counter = kPulseDuration; trigger_output.High(); } dac.Write(0, Keyframer::ConvertToDacCode(ui.shift_register[0], 0)); dac.Write(1, Keyframer::ConvertToDacCode(ui.shift_register[1], 0)); dac.Write(2, Keyframer::ConvertToDacCode(ui.shift_register[2], 0)); dac.Write(3, Keyframer::ConvertToDacCode(ui.shift_register[3], 0)); } else { // step int32_t max_step = ui.feature_mode() == Ui::FEAT_MODE_SEQ_STEP_EDIT ? (keyframer.num_keyframes() * ui.frame() / 65536) + 1 : keyframer.num_keyframes(); ui.sequencer_step = (ui.sequencer_step + 1) % max_step; // output a trigger when sequence resets if (ui.sequencer_step == 0) { pulse_counter = kPulseDuration; trigger_output.High(); } } } frame = keyframer.keyframe(ui.sequencer_step).timestamp; } else { lp_frame += (frame - lp_frame) >> 6; frame = lp_frame; } if (ui.feature_mode() == Ui::FEAT_MODE_KEYFRAME_LOOPER) { int32_t speed = frame_modulation; // -32768..32767 int32_t frequency = speed > 0 ? speed : -speed; uint32_t phase_increment = PolyLfo::FrequencyToPhaseIncrement(frequency); if (speed > 0) { phase += phase_increment; } else { phase -= phase_increment; } } if (ui.feature_mode() == Ui::FEAT_MODE_KEYFRAME_LOOPER) { keyframer.Evaluate(phase >> 16); } else { keyframer.Evaluate(frame); } if (ui.feature_mode() != Ui::FEAT_MODE_SEQ_SHIFT_REGISTER) { // sequencer or keyframer mode dac.Write(0, keyframer.dac_code(0)); dac.Write(1, keyframer.dac_code(1)); dac.Write(2, keyframer.dac_code(2)); dac.Write(3, keyframer.dac_code(3)); } } } } }