#include "ScriptEngine.hpp" #include "lang/SC_LanguageClient.h" #include "LangSource/SC_LanguageConfig.hpp" #include "LangSource/SCBase.h" #include "LangSource/VMGlobals.h" #include "LangSource/PyrObject.h" #include #include #include // getcwd // SuperCollider script engine for VCV-Prototype // Original author: Brian Heim /* DESIGN * * This is currently a work in progress. The idea is that the user writes a script * that defines a couple environment variables: * * ~vcv_frameDivider: Integer * ~vcv_bufferSize: Integer * ~vcv_process: Function (VcvPrototypeProcessBlock -> VcvPrototypeProcessBlock) * * ~vcv_process is invoked once per process block. Ideally, users should not manipulate * the block object in any way other than by writing directly to the arrays in `outputs`, * `knobs`, `lights`, and `switchLights`. */ extern rack::plugin::Plugin* pluginInstance; // plugin's version of 'this' class SuperColliderEngine; class SC_VcvPrototypeClient final : public SC_LanguageClient { public: SC_VcvPrototypeClient(SuperColliderEngine* engine); ~SC_VcvPrototypeClient(); // These will invoke the interpreter void interpret(const char * text) noexcept; void evaluateProcessBlock(ProcessBlock* block) noexcept; void setNumRows() noexcept { std::string&& command = "VcvPrototypeProcessBlock.numRows = " + std::to_string(NUM_ROWS); interpret(command.c_str()); } int getFrameDivider() noexcept { return getResultAsInt("^~vcv_frameDivider"); } int getBufferSize() noexcept { return getResultAsInt("^~vcv_bufferSize"); } bool isOk() const noexcept { return _ok; } void postText(const char* str, size_t len) override; // No concept of flushing or stdout vs stderr void postFlush(const char* str, size_t len) override { postText(str, len); } void postError(const char* str, size_t len) override { postText(str, len); } void flush() override {} private: std::string buildScProcessBlockString(const ProcessBlock* block) const noexcept; int getResultAsInt(const char* text) noexcept; bool isVcvPrototypeProcessBlock(const PyrSlot* slot) const noexcept; // converts top of stack back to ProcessBlock data void readScProcessBlockResult(ProcessBlock* block) noexcept; void fail(const std::string& msg) noexcept { _engine->display(msg); _ok = false; } SuperColliderEngine* _engine; bool _ok = true; }; class SuperColliderEngine final : public ScriptEngine { public: ~SuperColliderEngine() noexcept { _clientThread.join(); } std::string getEngineName() override { return "SuperCollider"; } int run(const std::string& path, const std::string& script) override { if (!_clientThread.joinable()) { _clientThread = std::thread([this, script]() { _client.reset(new SC_VcvPrototypeClient(this)); _client->setNumRows(); _client->interpret(script.c_str()); setFrameDivider(_client->getFrameDivider()); setBufferSize(_client->getBufferSize()); finishClientLoading(); }); } return 0; } int process() override { if (waitingOnClient()) return 0; if (clientHasError()) return 1; _client->evaluateProcessBlock(getProcessBlock()); return clientHasError() ? 1 : 0; } private: bool waitingOnClient() const noexcept { return !_clientRunning; } bool clientHasError() const noexcept { return !_client->isOk(); } void finishClientLoading() noexcept { _clientRunning = true; } std::unique_ptr _client; std::thread _clientThread; // used only to start up client std::atomic_bool _clientRunning{false}; // set to true when client is ready to process data }; SC_VcvPrototypeClient::SC_VcvPrototypeClient(SuperColliderEngine* engine) : SC_LanguageClient("SC VCV-Prototype client") , _engine(engine) { using Path = SC_LanguageConfig::Path; Path sc_lib_root = rack::asset::plugin(pluginInstance, "dep/supercollider/SCClassLibrary"); Path sc_ext_root = rack::asset::plugin(pluginInstance, "dep/supercollider_extensions"); Path sc_yaml_path = rack::asset::plugin(pluginInstance, "dep/supercollider/sclang_vcv_config.yml"); if (!SC_LanguageConfig::defaultLibraryConfig(/* isStandalone */ true)) fail("Failed setting default library config"); if (!gLanguageConfig->addIncludedDirectory(sc_lib_root)) fail("Failed to add main include directory"); if (!gLanguageConfig->addIncludedDirectory(sc_ext_root)) fail("Failed to add extensions include directory"); if (!SC_LanguageConfig::writeLibraryConfigYAML(sc_yaml_path)) fail("Failed to write library config YAML file"); SC_LanguageConfig::setConfigPath(sc_yaml_path); // TODO allow users to add extensions somehow? initRuntime(); compileLibrary(/* isStandalone */ true); if (!isLibraryCompiled()) fail("Error while compiling class library"); } SC_VcvPrototypeClient::~SC_VcvPrototypeClient() { shutdownLibrary(); shutdownRuntime(); } void SC_VcvPrototypeClient::interpret(const char* text) noexcept { setCmdLine(text); interpretCmdLine(); } void SC_VcvPrototypeClient::postText(const char* str, size_t len) { // Ensure the last message logged (presumably an error) stays onscreen. if (_ok) _engine->display(std::string(str, len)); } std::string SC_VcvPrototypeClient::buildScProcessBlockString(const ProcessBlock* block) const noexcept { std::ostringstream builder; // TODO so expensive builder << std::fixed; // to ensure floats aren't actually treated as Integers builder << "^~vcv_process.value(VcvPrototypeProcessBlock.new(" << block->sampleRate << ',' << block->sampleTime << ',' << block->bufferSize << ','; auto&& appendInOutArray = [&builder](const int bufferSize, const float (&data)[NUM_ROWS][MAX_BUFFER_SIZE]) { builder << '['; for (int i = 0; i < NUM_ROWS; ++i) { builder << "FloatArray["; for (int j = 0; j < bufferSize; ++j) { builder << data[i][j]; if (j != bufferSize - 1) builder << ','; } builder << ']'; if (i != NUM_ROWS - 1) builder << ','; } builder << ']'; }; appendInOutArray(block->bufferSize, block->inputs); builder << ','; appendInOutArray(block->bufferSize, block->outputs); builder << ','; // knobs builder << "FloatArray["; for (int i = 0; i < NUM_ROWS; ++i) { builder << block->knobs[i]; if (i != NUM_ROWS - 1) builder << ','; } builder << "],"; // switches builder << '[' << std::boolalpha; for (int i = 0; i < NUM_ROWS; ++i) { builder << block->switches[i]; if (i != NUM_ROWS - 1) builder << ','; } builder << "],"; // lights, switchlights auto&& appendLightsArray = [&builder](const float (&array)[NUM_ROWS][3]) { builder << '['; for (int i = 0; i < NUM_ROWS; ++i) { builder << "FloatArray[" << array[i][0] << ',' << array[i][1] << ',' << array[i][2] << ']'; if (i != NUM_ROWS - 1) builder << ','; } builder << ']'; }; appendLightsArray(block->lights); builder << ','; appendLightsArray(block->switchLights); builder << "));\n"; return builder.str(); } bool SC_VcvPrototypeClient::isVcvPrototypeProcessBlock(const PyrSlot* slot) const noexcept { // TODO return true; } void SC_VcvPrototypeClient::readScProcessBlockResult(ProcessBlock* block) noexcept { auto* resultSlot = &scGlobals()->result; if (!isVcvPrototypeProcessBlock(resultSlot)) { fail("Result of ~vcv_process must be an instance of VcvPrototypeProcessBlock"); return; } // See .sc object definition constexpr unsigned outputsSlotIndex = 4; constexpr unsigned knobsSlotIndex = 5; constexpr unsigned lightsSlotIndex = 7; constexpr unsigned switchLightsSlotIndex = 8; PyrObject* object = slotRawObject(resultSlot); { // OUTPUTS PyrSlot* outputsSlot = &object->slots[outputsSlotIndex]; // TODO check is array // TODO check size PyrObject* outputsObj = slotRawObject(outputsSlot); for (int i = 0; i < NUM_ROWS; ++i) { PyrSlot* floatArraySlot = &outputsObj->slots[i]; // TODO check is floatarray // TODO check size PyrObject* floatArrayObj = slotRawObject(floatArraySlot); PyrFloatArray* floatArray = reinterpret_cast(floatArrayObj); for (int j = 0; j < block->bufferSize; ++j) { block->outputs[i][j] = floatArray->f[j]; } } } { // KNOBS PyrSlot* knobsSlot = &object->slots[knobsSlotIndex]; // TODO check is floatarray // TODO check size PyrObject* knobsObj = slotRawObject(knobsSlot); PyrFloatArray* floatArray = reinterpret_cast(knobsObj); for (int i = 0; i < NUM_ROWS; ++i) { block->knobs[i] = floatArray->f[i]; } } { // LIGHTS PyrSlot* lightsSlot = &object->slots[lightsSlotIndex]; // TODO check is array // TODO check size PyrObject* lightsObj = slotRawObject(lightsSlot); for (int i = 0; i < NUM_ROWS; ++i) { PyrSlot* floatArraySlot = &lightsObj->slots[i]; // TODO check is floatarray // TODO check size PyrObject* floatArrayObj = slotRawObject(floatArraySlot); PyrFloatArray* floatArray = reinterpret_cast(floatArrayObj); block->lights[i][0] = floatArray->f[0]; block->lights[i][1] = floatArray->f[1]; block->lights[i][2] = floatArray->f[2]; } } { // SWITCH LIGHTS PyrSlot* switchLightsSlot = &object->slots[switchLightsSlotIndex]; // TODO check is array // TODO check size PyrObject* switchLightsObj = slotRawObject(switchLightsSlot); for (int i = 0; i < NUM_ROWS; ++i) { PyrSlot* floatArraySlot = &switchLightsObj->slots[i]; // TODO check is floatarray // TODO check size PyrObject* floatArrayObj = slotRawObject(floatArraySlot); PyrFloatArray* floatArray = reinterpret_cast(floatArrayObj); block->switchLights[i][0] = floatArray->f[0]; block->switchLights[i][1] = floatArray->f[1]; block->switchLights[i][2] = floatArray->f[2]; } } } // TODO test code static long long int gmax = 0; void SC_VcvPrototypeClient::evaluateProcessBlock(ProcessBlock* block) noexcept { // TODO timing test code auto start = std::chrono::high_resolution_clock::now(); auto&& string = buildScProcessBlockString(block); interpret(string.c_str()); readScProcessBlockResult(block); auto end = std::chrono::high_resolution_clock::now(); auto ticks = (end - start).count(); if (gmax < ticks) { gmax = ticks; printf("MAX TIME %lld\n", ticks); } } int SC_VcvPrototypeClient::getResultAsInt(const char* text) noexcept { interpret(text); auto* resultSlot = &scGlobals()->result; if (IsInt(resultSlot)) { auto intResult = slotRawInt(resultSlot); if (intResult > 0) { return intResult; } else { fail(std::string("Result of '") + text + "' should be > 0"); return -1; } } else { fail(std::string("Result of '") + text + "' should be Integer"); return -1; } } __attribute__((constructor(1000))) static void constructor() { addScriptEngine("sc"); addScriptEngine("scd"); }