|
- #pragma once
- #include <pffft.h>
-
- #include <dsp/common.hpp>
-
-
- namespace rack {
- namespace dsp {
-
-
- /** Real-valued FFT context.
- Wrapper for [PFFFT](https://bitbucket.org/jpommier/pffft/)
- `length` must be a multiple of 32.
- Buffers must be aligned to 16-byte boundaries. new[] and malloc() do this for you.
- */
- struct RealFFT {
- PFFFT_Setup* setup;
- int length;
-
- RealFFT(size_t length) {
- this->length = length;
- setup = pffft_new_setup(length, PFFFT_REAL);
- }
-
- ~RealFFT() {
- pffft_destroy_setup(setup);
- }
-
- /** Performs the real FFT.
- Input and output must be aligned using the above align*() functions.
- Input and output arrays may overlap.
- Input is `length` elements. Output is `2*length` elements.
- Output is arbitrarily ordered for performance reasons.
- However, this ordering is consistent, so element-wise multiplication with line up with other results, and the inverse FFT will return a correctly ordered result.
- */
- void rfftUnordered(const float* input, float* output) {
- pffft_transform(setup, input, output, NULL, PFFFT_FORWARD);
- }
-
- /** Performs the inverse real FFT.
- Input is `2*length` elements. Output is `length` elements.
- Scaling is such that IRFFT(RFFT(x)) = N*x.
- */
- void irfftUnordered(const float* input, float* output) {
- pffft_transform(setup, input, output, NULL, PFFFT_BACKWARD);
- }
-
- /** Slower than the above methods, but returns results in the "canonical" FFT order as follows.
- output[0] = F(0)
- output[1] = F(n/2)
- output[2] = real(F(1))
- output[3] = imag(F(1))
- output[4] = real(F(2))
- output[5] = imag(F(2))
- ...
- output[length - 2] = real(F(n/2 - 1))
- output[length - 1] = imag(F(n/2 - 1))
- */
- void rfft(const float* input, float* output) {
- pffft_transform_ordered(setup, input, output, NULL, PFFFT_FORWARD);
- }
-
- void irfft(const float* input, float* output) {
- pffft_transform_ordered(setup, input, output, NULL, PFFFT_BACKWARD);
- }
-
- /** Scales the RFFT so that `scale(IFFT(FFT(x))) = x`.
- */
- void scale(float* x) {
- float a = 1.f / length;
- for (int i = 0; i < length; i++) {
- x[i] *= a;
- }
- }
- };
-
-
- /** Complex-valued FFT context.
- `length` must be a multiple of 16.
- */
- struct ComplexFFT {
- PFFFT_Setup* setup;
- int length;
-
- ComplexFFT(size_t length) {
- this->length = length;
- setup = pffft_new_setup(length, PFFFT_COMPLEX);
- }
-
- ~ComplexFFT() {
- pffft_destroy_setup(setup);
- }
-
- /** Performs the complex FFT.
- Input and output must be aligned using the above align*() functions.
- Input is `2*length` elements. Output is `2*length` elements.
- */
- void fftUnordered(const float* input, float* output) {
- pffft_transform(setup, input, output, NULL, PFFFT_FORWARD);
- }
-
- /** Performs the inverse complex FFT.
- Input is `2*length` elements. Output is `2*length` elements.
- Scaling is such that FFT(IFFT(x)) = N*x.
- */
- void ifftUnordered(const float* input, float* output) {
- pffft_transform(setup, input, output, NULL, PFFFT_BACKWARD);
- }
-
- void fft(const float* input, float* output) {
- pffft_transform_ordered(setup, input, output, NULL, PFFFT_FORWARD);
- }
-
- void ifft(const float* input, float* output) {
- pffft_transform_ordered(setup, input, output, NULL, PFFFT_BACKWARD);
- }
-
- void scale(float* x) {
- float a = 1.f / length;
- for (int i = 0; i < length; i++) {
- x[2 * i + 0] *= a;
- x[2 * i + 1] *= a;
- }
- }
- };
-
-
- } // namespace dsp
- } // namespace rack
|