|
- #pragma once
- #include <complex>
- #include <algorithm> // for std::min, max
-
- #include <common.hpp>
-
-
- namespace rack {
- /** Extends `<cmath>` with extra functions and types */
- namespace math {
-
-
- ////////////////////
- // basic integer functions
- ////////////////////
-
- /** Returns true if `x` is odd. */
- template <typename T>
- bool isEven(T x) {
- return x % 2 == 0;
- }
-
- /** Returns true if `x` is odd. */
- template <typename T>
- bool isOdd(T x) {
- return x % 2 != 0;
- }
-
- /** Limits `x` between `a` and `b`.
- If `b < a`, returns a.
- */
- inline int clamp(int x, int a, int b) {
- return std::max(std::min(x, b), a);
- }
-
- /** Limits `x` between `a` and `b`.
- If `b < a`, switches the two values.
- */
- inline int clampSafe(int x, int a, int b) {
- return (a <= b) ? clamp(x, a, b) : clamp(x, b, a);
- }
-
- /** Euclidean modulus. Always returns `0 <= mod < b`.
- `b` must be positive.
- See https://en.wikipedia.org/wiki/Euclidean_division
- */
- inline int eucMod(int a, int b) {
- int mod = a % b;
- if (mod < 0) {
- mod += b;
- }
- return mod;
- }
-
- /** Euclidean division.
- `b` must be positive.
- */
- inline int eucDiv(int a, int b) {
- int div = a / b;
- int mod = a % b;
- if (mod < 0) {
- div -= 1;
- }
- return div;
- }
-
- inline void eucDivMod(int a, int b, int* div, int* mod) {
- *div = a / b;
- *mod = a % b;
- if (*mod < 0) {
- *div -= 1;
- *mod += b;
- }
- }
-
- /** Returns `floor(log_2(n))`, or 0 if `n == 1`. */
- inline int log2(int n) {
- int i = 0;
- while (n >>= 1) {
- i++;
- }
- return i;
- }
-
- /** Returns whether `n` is a power of 2. */
- template <typename T>
- bool isPow2(T n) {
- return n > 0 && (n & (n - 1)) == 0;
- }
-
- /** Returns 1 for positive numbers, -1 for negative numbers, and 0 for zero.
- See https://en.wikipedia.org/wiki/Sign_function.
- */
- template <typename T>
- T sgn(T x) {
- return x > 0 ? 1 : (x < 0 ? -1 : 0);
- }
-
- ////////////////////
- // basic float functions
- ////////////////////
-
- /** Limits `x` between `a` and `b`.
- If `b < a`, returns a.
- */
- inline float clamp(float x, float a = 0.f, float b = 1.f) {
- return std::fmax(std::fmin(x, b), a);
- }
-
- /** Limits `x` between `a` and `b`.
- If `b < a`, switches the two values.
- */
- inline float clampSafe(float x, float a = 0.f, float b = 1.f) {
- return (a <= b) ? clamp(x, a, b) : clamp(x, b, a);
- }
-
- /** Converts -0.f to 0.f. Leaves all other values unchanged. */
- #if defined __clang__
- // Clang doesn't support disabling individual optimizations, just everything.
- __attribute__((optnone))
- #else
- __attribute__((optimize("signed-zeros")))
- #endif
- inline float normalizeZero(float x) {
- return x + 0.f;
- }
-
- /** Euclidean modulus. Always returns `0 <= mod < b`.
- See https://en.wikipedia.org/wiki/Euclidean_division.
- */
- inline float eucMod(float a, float b) {
- float mod = std::fmod(a, b);
- if (mod < 0.f) {
- mod += b;
- }
- return mod;
- }
-
- /** Returns whether `a` is within epsilon distance from `b`. */
- inline bool isNear(float a, float b, float epsilon = 1e-6f) {
- return std::fabs(a - b) <= epsilon;
- }
-
- /** If the magnitude of `x` if less than epsilon, return 0. */
- inline float chop(float x, float epsilon = 1e-6f) {
- return std::fabs(x) <= epsilon ? 0.f : x;
- }
-
- /** Rescales `x` from the range `[xMin, xMax]` to `[yMin, yMax]`.
- */
- inline float rescale(float x, float xMin, float xMax, float yMin, float yMax) {
- return yMin + (x - xMin) / (xMax - xMin) * (yMax - yMin);
- }
-
- /** Linearly interpolates between `a` and `b`, from `p = 0` to `p = 1`.
- */
- inline float crossfade(float a, float b, float p) {
- return a + (b - a) * p;
- }
-
- /** Linearly interpolates an array `p` with index `x`.
- The array at `p` must be at least length `floor(x) + 2`.
- */
- inline float interpolateLinear(const float* p, float x) {
- int xi = x;
- float xf = x - xi;
- return crossfade(p[xi], p[xi + 1], xf);
- }
-
- /** Complex multiplication `c = a * b`.
- Arguments may be the same pointers.
- Example:
-
- cmultf(ar, ai, br, bi, &ar, &ai);
- */
- inline void complexMult(float ar, float ai, float br, float bi, float* cr, float* ci) {
- *cr = ar * br - ai * bi;
- *ci = ar * bi + ai * br;
- }
-
- ////////////////////
- // 2D vector and rectangle
- ////////////////////
-
- struct Rect;
-
- /** 2-dimensional vector of floats, representing a point on the plane for graphics.
- */
- struct Vec {
- float x = 0.f;
- float y = 0.f;
-
- Vec() {}
- Vec(float xy) : x(xy), y(xy) {}
- Vec(float x, float y) : x(x), y(y) {}
-
- float& operator[](int i) {
- return (i == 0) ? x : y;
- }
- const float& operator[](int i) const {
- return (i == 0) ? x : y;
- }
- /** Negates the vector.
- Equivalent to a reflection across the `y = -x` line.
- */
- Vec neg() const {
- return Vec(-x, -y);
- }
- Vec plus(Vec b) const {
- return Vec(x + b.x, y + b.y);
- }
- Vec minus(Vec b) const {
- return Vec(x - b.x, y - b.y);
- }
- Vec mult(float s) const {
- return Vec(x * s, y * s);
- }
- Vec mult(Vec b) const {
- return Vec(x * b.x, y * b.y);
- }
- Vec div(float s) const {
- return Vec(x / s, y / s);
- }
- Vec div(Vec b) const {
- return Vec(x / b.x, y / b.y);
- }
- float dot(Vec b) const {
- return x * b.x + y * b.y;
- }
- float arg() const {
- return std::atan2(y, x);
- }
- float norm() const {
- return std::hypot(x, y);
- }
- Vec normalize() const {
- return div(norm());
- }
- float square() const {
- return x * x + y * y;
- }
- float area() const {
- return x * y;
- }
- /** Rotates counterclockwise in radians. */
- Vec rotate(float angle) {
- float sin = std::sin(angle);
- float cos = std::cos(angle);
- return Vec(x * cos - y * sin, x * sin + y * cos);
- }
- /** Swaps the coordinates.
- Equivalent to a reflection across the `y = x` line.
- */
- Vec flip() const {
- return Vec(y, x);
- }
- Vec min(Vec b) const {
- return Vec(std::fmin(x, b.x), std::fmin(y, b.y));
- }
- Vec max(Vec b) const {
- return Vec(std::fmax(x, b.x), std::fmax(y, b.y));
- }
- Vec abs() const {
- return Vec(std::fabs(x), std::fabs(y));
- }
- Vec round() const {
- return Vec(std::round(x), std::round(y));
- }
- Vec floor() const {
- return Vec(std::floor(x), std::floor(y));
- }
- Vec ceil() const {
- return Vec(std::ceil(x), std::ceil(y));
- }
- bool equals(Vec b) const {
- return x == b.x && y == b.y;
- }
- bool isZero() const {
- return x == 0.f && y == 0.f;
- }
- bool isFinite() const {
- return std::isfinite(x) && std::isfinite(y);
- }
- Vec clamp(Rect bound) const;
- Vec clampSafe(Rect bound) const;
- Vec crossfade(Vec b, float p) {
- return this->plus(b.minus(*this).mult(p));
- }
-
- // Method aliases
- bool isEqual(Vec b) const {
- return equals(b);
- }
- };
-
-
- /** 2-dimensional rectangle for graphics.
- Mathematically, Rects include points on its left/top edge but *not* its right/bottom edge.
- The infinite Rect (equal to the entire plane) is defined using pos=-inf and size=inf.
- */
- struct Rect {
- Vec pos;
- Vec size;
-
- Rect() {}
- Rect(Vec pos, Vec size) : pos(pos), size(size) {}
- Rect(float posX, float posY, float sizeX, float sizeY) : pos(Vec(posX, posY)), size(Vec(sizeX, sizeY)) {}
- /** Constructs a Rect from a top-left and bottom-right vector.
- */
- static Rect fromMinMax(Vec a, Vec b) {
- return Rect(a, b.minus(a));
- }
- /** Constructs a Rect from any two opposite corners.
- */
- static Rect fromCorners(Vec a, Vec b) {
- return fromMinMax(a.min(b), a.max(b));
- }
- /** Returns the infinite Rect. */
- static Rect inf() {
- return Rect(Vec(-INFINITY, -INFINITY), Vec(INFINITY, INFINITY));
- }
-
- /** Returns whether this Rect contains a point, inclusive on the left/top, exclusive on the right/bottom.
- Correctly handles infinite Rects.
- */
- bool contains(Vec v) const {
- return (pos.x <= v.x) && (size.x == INFINITY || v.x < pos.x + size.x)
- && (pos.y <= v.y) && (size.y == INFINITY || v.y < pos.y + size.y);
- }
- /** Returns whether this Rect contains (is a superset of) a Rect.
- Correctly handles infinite Rects.
- */
- bool contains(Rect r) const {
- return (pos.x <= r.pos.x) && (r.pos.x - size.x <= pos.x - r.size.x)
- && (pos.y <= r.pos.y) && (r.pos.y - size.y <= pos.y - r.size.y);
- }
- /** Returns whether this Rect overlaps with another Rect.
- Correctly handles infinite Rects.
- */
- bool intersects(Rect r) const {
- return (r.size.x == INFINITY || pos.x < r.pos.x + r.size.x) && (size.x == INFINITY || r.pos.x < pos.x + size.x)
- && (r.size.y == INFINITY || pos.y < r.pos.y + r.size.y) && (size.y == INFINITY || r.pos.y < pos.y + size.y);
- }
- bool equals(Rect r) const {
- return pos.equals(r.pos) && size.equals(r.size);
- }
- float getLeft() const {
- return pos.x;
- }
- float getRight() const {
- return (size.x == INFINITY) ? INFINITY : (pos.x + size.x);
- }
- float getTop() const {
- return pos.y;
- }
- float getBottom() const {
- return (size.y == INFINITY) ? INFINITY : (pos.y + size.y);
- }
- /** Returns the center point of the rectangle.
- Returns a NaN coordinate if pos=-inf and size=inf.
- */
- Vec getCenter() const {
- return pos.plus(size.mult(0.5f));
- }
- Vec getTopLeft() const {
- return pos;
- }
- Vec getTopRight() const {
- return Vec(getRight(), getTop());
- }
- Vec getBottomLeft() const {
- return Vec(getLeft(), getBottom());
- }
- Vec getBottomRight() const {
- return Vec(getRight(), getBottom());
- }
- /** Clamps the edges of the rectangle to fit within a bound. */
- Rect clamp(Rect bound) const {
- Rect r;
- r.pos.x = math::clampSafe(pos.x, bound.pos.x, bound.pos.x + bound.size.x);
- r.pos.y = math::clampSafe(pos.y, bound.pos.y, bound.pos.y + bound.size.y);
- r.size.x = math::clamp(pos.x + size.x, bound.pos.x, bound.pos.x + bound.size.x) - r.pos.x;
- r.size.y = math::clamp(pos.y + size.y, bound.pos.y, bound.pos.y + bound.size.y) - r.pos.y;
- return r;
- }
- /** Nudges the position to fix inside a bounding box. */
- Rect nudge(Rect bound) const {
- Rect r;
- r.size = size;
- r.pos.x = math::clampSafe(pos.x, bound.pos.x, bound.pos.x + bound.size.x - size.x);
- r.pos.y = math::clampSafe(pos.y, bound.pos.y, bound.pos.y + bound.size.y - size.y);
- return r;
- }
- /** Returns the bounding box of the union of `this` and `b`. */
- Rect expand(Rect b) const {
- Rect r;
- r.pos.x = std::fmin(pos.x, b.pos.x);
- r.pos.y = std::fmin(pos.y, b.pos.y);
- r.size.x = std::fmax(pos.x + size.x, b.pos.x + b.size.x) - r.pos.x;
- r.size.y = std::fmax(pos.y + size.y, b.pos.y + b.size.y) - r.pos.y;
- return r;
- }
- /** Returns the intersection of `this` and `b`. */
- Rect intersect(Rect b) const {
- Rect r;
- r.pos.x = std::fmax(pos.x, b.pos.x);
- r.pos.y = std::fmax(pos.y, b.pos.y);
- r.size.x = std::fmin(pos.x + size.x, b.pos.x + b.size.x) - r.pos.x;
- r.size.y = std::fmin(pos.y + size.y, b.pos.y + b.size.y) - r.pos.y;
- return r;
- }
- /** Returns a Rect with its position set to zero. */
- Rect zeroPos() const {
- return Rect(Vec(), size);
- }
- /** Expands each corner. */
- Rect grow(Vec delta) const {
- Rect r;
- r.pos = pos.minus(delta);
- r.size = size.plus(delta.mult(2.f));
- return r;
- }
- /** Contracts each corner. */
- Rect shrink(Vec delta) const {
- Rect r;
- r.pos = pos.plus(delta);
- r.size = size.minus(delta.mult(2.f));
- return r;
- }
-
- // Method aliases
- bool isContaining(Vec v) const {
- return contains(v);
- }
- bool isIntersecting(Rect r) const {
- return intersects(r);
- }
- bool isEqual(Rect r) const {
- return equals(r);
- }
- };
-
-
- inline Vec Vec::clamp(Rect bound) const {
- return Vec(
- math::clamp(x, bound.pos.x, bound.pos.x + bound.size.x),
- math::clamp(y, bound.pos.y, bound.pos.y + bound.size.y)
- );
- }
-
- inline Vec Vec::clampSafe(Rect bound) const {
- return Vec(
- math::clampSafe(x, bound.pos.x, bound.pos.x + bound.size.x),
- math::clampSafe(y, bound.pos.y, bound.pos.y + bound.size.y)
- );
- }
-
-
- // Operator overloads for Vec
- inline Vec operator+(const Vec& a) {
- return a;
- }
- inline Vec operator-(const Vec& a) {
- return a.neg();
- }
- inline Vec operator+(const Vec& a, const Vec& b) {
- return a.plus(b);
- }
- inline Vec operator-(const Vec& a, const Vec& b) {
- return a.minus(b);
- }
- inline Vec operator*(const Vec& a, const Vec& b) {
- return a.mult(b);
- }
- inline Vec operator*(const Vec& a, const float& b) {
- return a.mult(b);
- }
- inline Vec operator*(const float& a, const Vec& b) {
- return b.mult(a);
- }
- inline Vec operator/(const Vec& a, const Vec& b) {
- return a.div(b);
- }
- inline Vec operator/(const Vec& a, const float& b) {
- return a.div(b);
- }
- inline Vec operator+=(Vec& a, const Vec& b) {
- return a = a.plus(b);
- }
- inline Vec operator-=(Vec& a, const Vec& b) {
- return a = a.minus(b);
- }
- inline Vec operator*=(Vec& a, const Vec& b) {
- return a = a.mult(b);
- }
- inline Vec operator*=(Vec& a, const float& b) {
- return a = a.mult(b);
- }
- inline Vec operator/=(Vec& a, const Vec& b) {
- return a = a.div(b);
- }
- inline Vec operator/=(Vec& a, const float& b) {
- return a = a.div(b);
- }
- inline bool operator==(const Vec& a, const Vec& b) {
- return a.equals(b);
- }
- inline bool operator!=(const Vec& a, const Vec& b) {
- return !a.equals(b);
- }
-
-
- // Operator overloads for Rect
- inline bool operator==(const Rect& a, const Rect& b) {
- return a.equals(b);
- }
- inline bool operator!=(const Rect& a, const Rect& b) {
- return !a.equals(b);
- }
-
-
- /** Expands a Vec and Rect into a comma-separated list.
- Useful for print debugging.
-
- printf("(%f %f) (%f %f %f %f)", VEC_ARGS(v), RECT_ARGS(r));
-
- Or passing the values to a C function.
-
- nvgRect(vg, RECT_ARGS(r));
- */
- #define VEC_ARGS(v) (v).x, (v).y
- #define RECT_ARGS(r) (r).pos.x, (r).pos.y, (r).size.x, (r).size.y
-
-
- } // namespace math
- } // namespace rack
|