|
- #pragma once
-
- #include <math.h>
-
-
- namespace rack {
-
- ////////////////////
- // integer functions
- ////////////////////
-
- inline int mini(int a, int b) {
- return a < b ? a : b;
- }
-
- inline int maxi(int a, int b) {
- return a > b ? a : b;
- }
-
- /** Limits a value between a minimum and maximum */
- inline int clampi(int x, int min, int max) {
- return x > max ? max : x < min ? min : x;
- }
-
- inline int absi(int a) {
- return a >= 0 ? a : -a;
- }
-
- // Euclidean modulus, always returns 0 <= mod < base for positive base
- // Assumes this architecture's division is non-Euclidean
- inline int eucmodi(int a, int base) {
- int mod = a % base;
- return mod < 0 ? mod + base : mod;
- }
-
- inline int log2i(int n) {
- int i = 0;
- while (n >>= 1) {
- i++;
- }
- return i;
- }
-
- inline bool ispow2i(int n) {
- return n > 0 && (n & (n - 1)) == 0;
- }
-
- ////////////////////
- // float functions
- ////////////////////
-
- /** Returns 1.0 for positive numbers and -1.0 for negative numbers (including positive/negative zero) */
- inline float sgnf(float x) {
- return copysignf(1.0, x);
- }
-
- inline float eucmodf(float a, float base) {
- float mod = fmodf(a, base);
- return mod < 0.0 ? mod + base : mod;
- }
-
- /** Limits a value between a minimum and maximum
- If min < max, returns max
- */
- inline float clampf(float x, float min, float max) {
- return fmaxf(min, fminf(max, x));
- }
-
- /** If the magnitude of x if less than eps, return 0 */
- inline float chopf(float x, float eps) {
- return -eps < x && x < eps ? 0.0 : x;
- }
-
- inline float rescalef(float x, float xMin, float xMax, float yMin, float yMax) {
- return yMin + (x - xMin) / (xMax - xMin) * (yMax - yMin);
- }
-
- inline float crossf(float a, float b, float frac) {
- return (1.0 - frac) * a + frac * b;
- }
-
- inline float quadraticBipolar(float x) {
- float x2 = x*x;
- return x >= 0.0 ? x2 : -x2;
- }
-
- inline float cubic(float x) {
- return x*x*x;
- }
-
- inline float quarticBipolar(float x) {
- return x >= 0.0 ? x*x*x*x : -x*x*x*x;
- }
-
- inline float quintic(float x) {
- // optimal with --fast-math
- return x*x*x*x*x;
- }
-
- inline float sqrtBipolar(float x) {
- return x >= 0.0 ? sqrtf(x) : -sqrtf(-x);
- }
-
- /** This is pretty much a scaled sinh */
- inline float exponentialBipolar(float b, float x) {
- const float a = b - 1.0 / b;
- return (powf(b, x) - powf(b, -x)) / a;
- }
-
- inline float sincf(float x) {
- if (x == 0.0)
- return 1.0;
- x *= M_PI;
- return sinf(x) / x;
- }
-
- inline float getf(const float *p, float v = 0.0) {
- return p ? *p : v;
- }
-
- inline void setf(float *p, float v) {
- if (p)
- *p = v;
- }
-
- /** Linearly interpolate an array `p` with index `x`
- Assumes that the array at `p` is of length at least floor(x)+1.
- */
- inline float interpf(const float *p, float x) {
- int xi = x;
- float xf = x - xi;
- return crossf(p[xi], p[xi+1], xf);
- }
-
- /** Complex multiply c = a * b
- It is of course acceptable to reuse arguments
- i.e. cmultf(&ar, &ai, ar, ai, br, bi)
- */
- inline void cmultf(float *cr, float *ci, float ar, float ai, float br, float bi) {
- *cr = ar * br - ai * bi;
- *ci = ar * bi + ai * br;
- }
-
- ////////////////////
- // 2D float vector
- ////////////////////
-
- struct Vec {
- float x, y;
-
- Vec() : x(0.0), y(0.0) {}
- Vec(float x, float y) : x(x), y(y) {}
-
- Vec neg() {
- return Vec(-x, -y);
- }
- Vec plus(Vec b) {
- return Vec(x + b.x, y + b.y);
- }
- Vec minus(Vec b) {
- return Vec(x - b.x, y - b.y);
- }
- Vec mult(float s) {
- return Vec(x * s, y * s);
- }
- Vec div(float s) {
- return Vec(x / s, y / s);
- }
- float dot(Vec b) {
- return x * b.x + y * b.y;
- }
- float norm() {
- return hypotf(x, y);
- }
- Vec min(Vec b) {
- return Vec(fminf(x, b.x), fminf(y, b.y));
- }
- Vec max(Vec b) {
- return Vec(fmaxf(x, b.x), fmaxf(y, b.y));
- }
- Vec round() {
- return Vec(roundf(x), roundf(y));
- }
- bool isFinite() {
- return isfinite(x) && isfinite(y);
- }
- bool isZero() {
- return x == 0.0 && y == 0.0;
- }
- };
-
-
- struct Rect {
- Vec pos;
- Vec size;
-
- Rect() {}
- Rect(Vec pos, Vec size) : pos(pos), size(size) {}
- static Rect fromMinMax(Vec min, Vec max) {
- return Rect(min, max.minus(min));
- }
-
- /** Returns whether this Rect contains another Rect, inclusive on the top/left, non-inclusive on the bottom/right */
- bool contains(Vec v) {
- return pos.x <= v.x && v.x < pos.x + size.x
- && pos.y <= v.y && v.y < pos.y + size.y;
- }
- /** Returns whether this Rect overlaps with another Rect */
- bool intersects(Rect r) {
- return (pos.x + size.x > r.pos.x && r.pos.x + r.size.x > pos.x)
- && (pos.y + size.y > r.pos.y && r.pos.y + r.size.y > pos.y);
- }
- Vec getCenter() {
- return pos.plus(size.mult(0.5));
- }
- Vec getTopRight() {
- return pos.plus(Vec(size.x, 0.0));
- }
- Vec getBottomLeft() {
- return pos.plus(Vec(0.0, size.y));
- }
- Vec getBottomRight() {
- return pos.plus(size);
- }
- /** Clamps the position to fix inside a bounding box */
- Rect clamp(Rect bound) {
- Rect r;
- r.size = size;
- r.pos.x = clampf(pos.x, bound.pos.x, bound.pos.x + bound.size.x - size.x);
- r.pos.y = clampf(pos.y, bound.pos.y, bound.pos.y + bound.size.y - size.y);
- return r;
- }
- };
-
-
- } // namespace rack
|