|
- #ifndef STK_TWOPOLE_H
- #define STK_TWOPOLE_H
-
- #include "Filter.h"
-
- namespace stk {
-
- /***************************************************/
- /*! \class TwoPole
- \brief STK two-pole filter class.
-
- This class implements a two-pole digital filter. A method is
- provided for creating a resonance in the frequency response while
- maintaining a nearly constant filter gain.
-
- by Perry R. Cook and Gary P. Scavone, 1995--2017.
- */
- /***************************************************/
-
- class TwoPole : public Filter
- {
- public:
-
- //! Default constructor creates a second-order pass-through filter.
- TwoPole( void );
-
- //! Class destructor.
- ~TwoPole();
-
- //! A function to enable/disable the automatic updating of class data when the STK sample rate changes.
- void ignoreSampleRateChange( bool ignore = true ) { ignoreSampleRateChange_ = ignore; };
-
- //! Set the b[0] coefficient value.
- void setB0( StkFloat b0 ) { b_[0] = b0; };
-
- //! Set the a[1] coefficient value.
- void setA1( StkFloat a1 ) { a_[1] = a1; };
-
- //! Set the a[2] coefficient value.
- void setA2( StkFloat a2 ) { a_[2] = a2; };
-
- //! Set all filter coefficients.
- void setCoefficients( StkFloat b0, StkFloat a1, StkFloat a2, bool clearState = false );
-
- //! Sets the filter coefficients for a resonance at \e frequency (in Hz).
- /*!
- This method determines the filter coefficients corresponding to
- two complex-conjugate poles with the given \e frequency (in Hz)
- and \e radius from the z-plane origin. If \e normalize is true,
- the coefficients are then normalized to produce unity gain at \e
- frequency (the actual maximum filter gain tends to be slightly
- greater than unity when \e radius is not close to one). The
- resulting filter frequency response has a resonance at the given
- \e frequency. The closer the poles are to the unit-circle (\e
- radius close to one), the narrower the resulting resonance width.
- An unstable filter will result for \e radius >= 1.0. The
- \e frequency value should be between zero and half the sample rate.
- For a better resonance filter, use a BiQuad filter. \sa BiQuad
- filter class
- */
- void setResonance(StkFloat frequency, StkFloat radius, bool normalize = false);
-
- //! Return the last computed output value.
- StkFloat lastOut( void ) const { return lastFrame_[0]; };
-
- //! Input one sample to the filter and return one output.
- StkFloat tick( StkFloat input );
-
- //! Take a channel of the StkFrames object as inputs to the filter and replace with corresponding outputs.
- /*!
- The StkFrames argument reference is returned. The \c channel
- argument must be less than the number of channels in the
- StkFrames argument (the first channel is specified by 0).
- However, range checking is only performed if _STK_DEBUG_ is
- defined during compilation, in which case an out-of-range value
- will trigger an StkError exception.
- */
- StkFrames& tick( StkFrames& frames, unsigned int channel = 0 );
-
- //! Take a channel of the \c iFrames object as inputs to the filter and write outputs to the \c oFrames object.
- /*!
- The \c iFrames object reference is returned. Each channel
- argument must be less than the number of channels in the
- corresponding StkFrames argument (the first channel is specified
- by 0). However, range checking is only performed if _STK_DEBUG_
- is defined during compilation, in which case an out-of-range value
- will trigger an StkError exception.
- */
- StkFrames& tick( StkFrames& iFrames, StkFrames &oFrames, unsigned int iChannel = 0, unsigned int oChannel = 0 );
-
- protected:
-
- virtual void sampleRateChanged( StkFloat newRate, StkFloat oldRate );
- };
-
- inline StkFloat TwoPole :: tick( StkFloat input )
- {
- inputs_[0] = gain_ * input;
- lastFrame_[0] = b_[0] * inputs_[0] - a_[1] * outputs_[1] - a_[2] * outputs_[2];
- outputs_[2] = outputs_[1];
- outputs_[1] = lastFrame_[0];
-
- return lastFrame_[0];
- }
-
- inline StkFrames& TwoPole :: tick( StkFrames& frames, unsigned int channel )
- {
- #if defined(_STK_DEBUG_)
- if ( channel >= frames.channels() ) {
- oStream_ << "TwoPole::tick(): channel and StkFrames arguments are incompatible!";
- handleError( StkError::FUNCTION_ARGUMENT );
- }
- #endif
-
- StkFloat *samples = &frames[channel];
- unsigned int hop = frames.channels();
- for ( unsigned int i=0; i<frames.frames(); i++, samples += hop ) {
- inputs_[0] = gain_ * *samples;
- *samples = b_[0] * inputs_[0] - a_[1] * outputs_[1] - a_[2] * outputs_[2];
- outputs_[2] = outputs_[1];
- outputs_[1] = *samples;
- }
-
- lastFrame_[0] = outputs_[1];
- return frames;
- }
-
- inline StkFrames& TwoPole :: tick( StkFrames& iFrames, StkFrames& oFrames, unsigned int iChannel, unsigned int oChannel )
- {
- #if defined(_STK_DEBUG_)
- if ( iChannel >= iFrames.channels() || oChannel >= oFrames.channels() ) {
- oStream_ << "TwoPole::tick(): channel and StkFrames arguments are incompatible!";
- handleError( StkError::FUNCTION_ARGUMENT );
- }
- #endif
-
- StkFloat *iSamples = &iFrames[iChannel];
- StkFloat *oSamples = &oFrames[oChannel];
- unsigned int iHop = iFrames.channels(), oHop = oFrames.channels();
- for ( unsigned int i=0; i<iFrames.frames(); i++, iSamples += iHop, oSamples += oHop ) {
- inputs_[0] = gain_ * *iSamples;
- *oSamples = b_[0] * inputs_[0] - a_[1] * outputs_[1] - a_[2] * outputs_[2];
- outputs_[2] = outputs_[1];
- outputs_[1] = *oSamples;
- }
-
- lastFrame_[0] = outputs_[1];
- return iFrames;
- }
-
- } // stk namespace
-
- #endif
|