| 
							- #pragma once
 - #include <complex>
 - #include <algorithm> // for std::min, max
 - 
 - #include <common.hpp>
 - 
 - 
 - namespace rack {
 - /** Extends `<cmath>` with extra functions and types */
 - namespace math {
 - 
 - 
 - ////////////////////
 - // basic integer functions
 - ////////////////////
 - 
 - /** Returns true if `x` is odd. */
 - template <typename T>
 - bool isEven(T x) {
 - 	return x % 2 == 0;
 - }
 - 
 - /** Returns true if `x` is odd. */
 - template <typename T>
 - bool isOdd(T x) {
 - 	return x % 2 != 0;
 - }
 - 
 - /** Limits `x` between `a` and `b`.
 - If `b < a`, returns a.
 - */
 - inline int clamp(int x, int a, int b) {
 - 	return std::max(std::min(x, b), a);
 - }
 - 
 - /** Limits `x` between `a` and `b`.
 - If `b < a`, switches the two values.
 - */
 - inline int clampSafe(int x, int a, int b) {
 - 	return (a <= b) ? clamp(x, a, b) : clamp(x, b, a);
 - }
 - 
 - /** Euclidean modulus. Always returns `0 <= mod < b`.
 - `b` must be positive.
 - See https://en.wikipedia.org/wiki/Euclidean_division
 - */
 - inline int eucMod(int a, int b) {
 - 	int mod = a % b;
 - 	if (mod < 0) {
 - 		mod += b;
 - 	}
 - 	return mod;
 - }
 - 
 - /** Euclidean division.
 - `b` must be positive.
 - */
 - inline int eucDiv(int a, int b) {
 - 	int div = a / b;
 - 	int mod = a % b;
 - 	if (mod < 0) {
 - 		div -= 1;
 - 	}
 - 	return div;
 - }
 - 
 - inline void eucDivMod(int a, int b, int* div, int* mod) {
 - 	*div = a / b;
 - 	*mod = a % b;
 - 	if (*mod < 0) {
 - 		*div -= 1;
 - 		*mod += b;
 - 	}
 - }
 - 
 - /** Returns `floor(log_2(n))`, or 0 if `n == 1`. */
 - inline int log2(int n) {
 - 	int i = 0;
 - 	while (n >>= 1) {
 - 		i++;
 - 	}
 - 	return i;
 - }
 - 
 - /** Returns whether `n` is a power of 2. */
 - template <typename T>
 - bool isPow2(T n) {
 - 	return n > 0 && (n & (n - 1)) == 0;
 - }
 - 
 - /** Returns 1 for positive numbers, -1 for negative numbers, and 0 for zero.
 - See https://en.wikipedia.org/wiki/Sign_function.
 - */
 - template <typename T>
 - T sgn(T x) {
 - 	return x > 0 ? 1 : (x < 0 ? -1 : 0);
 - }
 - 
 - ////////////////////
 - // basic float functions
 - ////////////////////
 - 
 - /** Limits `x` between `a` and `b`.
 - If `b < a`, returns a.
 - */
 - inline float clamp(float x, float a = 0.f, float b = 1.f) {
 - 	return std::fmax(std::fmin(x, b), a);
 - }
 - 
 - /** Limits `x` between `a` and `b`.
 - If `b < a`, switches the two values.
 - */
 - inline float clampSafe(float x, float a = 0.f, float b = 1.f) {
 - 	return (a <= b) ? clamp(x, a, b) : clamp(x, b, a);
 - }
 - 
 - /** Converts -0.f to 0.f. Leaves all other values unchanged. */
 - #if defined __clang__
 - // Clang doesn't support disabling individual optimizations, just everything.
 - __attribute__((optnone))
 - #else
 - __attribute__((optimize("signed-zeros")))
 - #endif
 - inline float normalizeZero(float x) {
 - 	return x + 0.f;
 - }
 - 
 - /** Euclidean modulus. Always returns `0 <= mod < b`.
 - See https://en.wikipedia.org/wiki/Euclidean_division.
 - */
 - inline float eucMod(float a, float b) {
 - 	float mod = std::fmod(a, b);
 - 	if (mod < 0.f) {
 - 		mod += b;
 - 	}
 - 	return mod;
 - }
 - 
 - /** Returns whether `a` is within epsilon distance from `b`. */
 - inline bool isNear(float a, float b, float epsilon = 1e-6f) {
 - 	return std::fabs(a - b) <= epsilon;
 - }
 - 
 - /** If the magnitude of `x` if less than epsilon, return 0. */
 - inline float chop(float x, float epsilon = 1e-6f) {
 - 	return std::fabs(x) <= epsilon ? 0.f : x;
 - }
 - 
 - /** Rescales `x` from the range `[xMin, xMax]` to `[yMin, yMax]`.
 - */
 - inline float rescale(float x, float xMin, float xMax, float yMin, float yMax) {
 - 	return yMin + (x - xMin) / (xMax - xMin) * (yMax - yMin);
 - }
 - 
 - /** Linearly interpolates between `a` and `b`, from `p = 0` to `p = 1`.
 - */
 - inline float crossfade(float a, float b, float p) {
 - 	return a + (b - a) * p;
 - }
 - 
 - /** Linearly interpolates an array `p` with index `x`.
 - The array at `p` must be at least length `floor(x) + 2`.
 - */
 - inline float interpolateLinear(const float* p, float x) {
 - 	int xi = x;
 - 	float xf = x - xi;
 - 	return crossfade(p[xi], p[xi + 1], xf);
 - }
 - 
 - /** Complex multiplication `c = a * b`.
 - Arguments may be the same pointers.
 - Example:
 - 
 - 	cmultf(ar, ai, br, bi, &ar, &ai);
 - */
 - inline void complexMult(float ar, float ai, float br, float bi, float* cr, float* ci) {
 - 	*cr = ar * br - ai * bi;
 - 	*ci = ar * bi + ai * br;
 - }
 - 
 - ////////////////////
 - // 2D vector and rectangle
 - ////////////////////
 - 
 - struct Rect;
 - 
 - /** 2-dimensional vector of floats, representing a point on the plane for graphics.
 - */
 - struct Vec {
 - 	float x = 0.f;
 - 	float y = 0.f;
 - 
 - 	Vec() {}
 - 	Vec(float xy) : x(xy), y(xy) {}
 - 	Vec(float x, float y) : x(x), y(y) {}
 - 
 - 	float& operator[](int i) {
 - 		return (i == 0) ? x : y;
 - 	}
 - 	const float& operator[](int i) const {
 - 		return (i == 0) ? x : y;
 - 	}
 - 	/** Negates the vector.
 - 	Equivalent to a reflection across the `y = -x` line.
 - 	*/
 - 	Vec neg() const {
 - 		return Vec(-x, -y);
 - 	}
 - 	Vec plus(Vec b) const {
 - 		return Vec(x + b.x, y + b.y);
 - 	}
 - 	Vec minus(Vec b) const {
 - 		return Vec(x - b.x, y - b.y);
 - 	}
 - 	Vec mult(float s) const {
 - 		return Vec(x * s, y * s);
 - 	}
 - 	Vec mult(Vec b) const {
 - 		return Vec(x * b.x, y * b.y);
 - 	}
 - 	Vec div(float s) const {
 - 		return Vec(x / s, y / s);
 - 	}
 - 	Vec div(Vec b) const {
 - 		return Vec(x / b.x, y / b.y);
 - 	}
 - 	float dot(Vec b) const {
 - 		return x * b.x + y * b.y;
 - 	}
 - 	float arg() const {
 - 		return std::atan2(y, x);
 - 	}
 - 	float norm() const {
 - 		return std::hypot(x, y);
 - 	}
 - 	Vec normalize() const {
 - 		return div(norm());
 - 	}
 - 	float square() const {
 - 		return x * x + y * y;
 - 	}
 - 	float area() const {
 - 		return x * y;
 - 	}
 - 	/** Rotates counterclockwise in radians. */
 - 	Vec rotate(float angle) {
 - 		float sin = std::sin(angle);
 - 		float cos = std::cos(angle);
 - 		return Vec(x * cos - y * sin, x * sin + y * cos);
 - 	}
 - 	/** Swaps the coordinates.
 - 	Equivalent to a reflection across the `y = x` line.
 - 	*/
 - 	Vec flip() const {
 - 		return Vec(y, x);
 - 	}
 - 	Vec min(Vec b) const {
 - 		return Vec(std::fmin(x, b.x), std::fmin(y, b.y));
 - 	}
 - 	Vec max(Vec b) const {
 - 		return Vec(std::fmax(x, b.x), std::fmax(y, b.y));
 - 	}
 - 	Vec abs() const {
 - 		return Vec(std::fabs(x), std::fabs(y));
 - 	}
 - 	Vec round() const {
 - 		return Vec(std::round(x), std::round(y));
 - 	}
 - 	Vec floor() const {
 - 		return Vec(std::floor(x), std::floor(y));
 - 	}
 - 	Vec ceil() const {
 - 		return Vec(std::ceil(x), std::ceil(y));
 - 	}
 - 	bool equals(Vec b) const {
 - 		return x == b.x && y == b.y;
 - 	}
 - 	bool isZero() const {
 - 		return x == 0.f && y == 0.f;
 - 	}
 - 	bool isFinite() const {
 - 		return std::isfinite(x) && std::isfinite(y);
 - 	}
 - 	Vec clamp(Rect bound) const;
 - 	Vec clampSafe(Rect bound) const;
 - 	Vec crossfade(Vec b, float p) {
 - 		return this->plus(b.minus(*this).mult(p));
 - 	}
 - 
 - 	// Method aliases
 - 	bool isEqual(Vec b) const {
 - 		return equals(b);
 - 	}
 - };
 - 
 - 
 - /** 2-dimensional rectangle for graphics.
 - Mathematically, Rects include points on its left/top edge but *not* its right/bottom edge.
 - The infinite Rect (equal to the entire plane) is defined using pos=-inf and size=inf.
 - */
 - struct Rect {
 - 	Vec pos;
 - 	Vec size;
 - 
 - 	Rect() {}
 - 	Rect(Vec pos, Vec size) : pos(pos), size(size) {}
 - 	Rect(float posX, float posY, float sizeX, float sizeY) : pos(Vec(posX, posY)), size(Vec(sizeX, sizeY)) {}
 - 	/** Constructs a Rect from a top-left and bottom-right vector.
 - 	*/
 - 	static Rect fromMinMax(Vec a, Vec b) {
 - 		return Rect(a, b.minus(a));
 - 	}
 - 	/** Constructs a Rect from any two opposite corners.
 - 	*/
 - 	static Rect fromCorners(Vec a, Vec b) {
 - 		return fromMinMax(a.min(b), a.max(b));
 - 	}
 - 	/** Returns the infinite Rect. */
 - 	static Rect inf() {
 - 		return Rect(Vec(-INFINITY, -INFINITY), Vec(INFINITY, INFINITY));
 - 	}
 - 
 - 	/** Returns whether this Rect contains a point, inclusive on the left/top, exclusive on the right/bottom.
 - 	Correctly handles infinite Rects.
 - 	*/
 - 	bool contains(Vec v) const {
 - 		return (pos.x <= v.x) && (size.x == INFINITY || v.x < pos.x + size.x)
 - 		    && (pos.y <= v.y) && (size.y == INFINITY || v.y < pos.y + size.y);
 - 	}
 - 	/** Returns whether this Rect contains (is a superset of) a Rect.
 - 	Correctly handles infinite Rects.
 - 	*/
 - 	bool contains(Rect r) const {
 - 		return (pos.x <= r.pos.x) && (r.pos.x - size.x <= pos.x - r.size.x)
 - 		    && (pos.y <= r.pos.y) && (r.pos.y - size.y <= pos.y - r.size.y);
 - 	}
 - 	/** Returns whether this Rect overlaps with another Rect.
 - 	Correctly handles infinite Rects.
 - 	*/
 - 	bool intersects(Rect r) const {
 - 		return (r.size.x == INFINITY || pos.x < r.pos.x + r.size.x) && (size.x == INFINITY || r.pos.x < pos.x + size.x)
 - 		    && (r.size.y == INFINITY || pos.y < r.pos.y + r.size.y) && (size.y == INFINITY || r.pos.y < pos.y + size.y);
 - 	}
 - 	bool equals(Rect r) const {
 - 		return pos.equals(r.pos) && size.equals(r.size);
 - 	}
 - 	float getLeft() const {
 - 		return pos.x;
 - 	}
 - 	float getRight() const {
 - 		return (size.x == INFINITY) ? INFINITY : (pos.x + size.x);
 - 	}
 - 	float getTop() const {
 - 		return pos.y;
 - 	}
 - 	float getBottom() const {
 - 		return (size.y == INFINITY) ? INFINITY : (pos.y + size.y);
 - 	}
 - 	float getWidth() const {
 - 		return size.x;
 - 	}
 - 	float getHeight() const {
 - 		return size.y;
 - 	}
 - 	/** Returns the center point of the rectangle.
 - 	Returns a NaN coordinate if pos=-inf and size=inf.
 - 	*/
 - 	Vec getCenter() const {
 - 		return pos.plus(size.mult(0.5f));
 - 	}
 - 	Vec getTopLeft() const {
 - 		return pos;
 - 	}
 - 	Vec getTopRight() const {
 - 		return Vec(getRight(), getTop());
 - 	}
 - 	Vec getBottomLeft() const {
 - 		return Vec(getLeft(), getBottom());
 - 	}
 - 	Vec getBottomRight() const {
 - 		return Vec(getRight(), getBottom());
 - 	}
 - 	/** Clamps the edges of the rectangle to fit within a bound. */
 - 	Rect clamp(Rect bound) const {
 - 		Rect r;
 - 		r.pos.x = math::clampSafe(pos.x, bound.pos.x, bound.pos.x + bound.size.x);
 - 		r.pos.y = math::clampSafe(pos.y, bound.pos.y, bound.pos.y + bound.size.y);
 - 		r.size.x = math::clamp(pos.x + size.x, bound.pos.x, bound.pos.x + bound.size.x) - r.pos.x;
 - 		r.size.y = math::clamp(pos.y + size.y, bound.pos.y, bound.pos.y + bound.size.y) - r.pos.y;
 - 		return r;
 - 	}
 - 	/** Nudges the position to fix inside a bounding box. */
 - 	Rect nudge(Rect bound) const {
 - 		Rect r;
 - 		r.size = size;
 - 		r.pos.x = math::clampSafe(pos.x, bound.pos.x, bound.pos.x + bound.size.x - size.x);
 - 		r.pos.y = math::clampSafe(pos.y, bound.pos.y, bound.pos.y + bound.size.y - size.y);
 - 		return r;
 - 	}
 - 	/** Returns the bounding box of the union of `this` and `b`. */
 - 	Rect expand(Rect b) const {
 - 		Rect r;
 - 		r.pos.x = std::fmin(pos.x, b.pos.x);
 - 		r.pos.y = std::fmin(pos.y, b.pos.y);
 - 		r.size.x = std::fmax(pos.x + size.x, b.pos.x + b.size.x) - r.pos.x;
 - 		r.size.y = std::fmax(pos.y + size.y, b.pos.y + b.size.y) - r.pos.y;
 - 		return r;
 - 	}
 - 	/** Returns the intersection of `this` and `b`. */
 - 	Rect intersect(Rect b) const {
 - 		Rect r;
 - 		r.pos.x = std::fmax(pos.x, b.pos.x);
 - 		r.pos.y = std::fmax(pos.y, b.pos.y);
 - 		r.size.x = std::fmin(pos.x + size.x, b.pos.x + b.size.x) - r.pos.x;
 - 		r.size.y = std::fmin(pos.y + size.y, b.pos.y + b.size.y) - r.pos.y;
 - 		return r;
 - 	}
 - 	/** Returns a Rect with its position set to zero. */
 - 	Rect zeroPos() const {
 - 		return Rect(Vec(), size);
 - 	}
 - 	/** Expands each corner. */
 - 	Rect grow(Vec delta) const {
 - 		Rect r;
 - 		r.pos = pos.minus(delta);
 - 		r.size = size.plus(delta.mult(2.f));
 - 		return r;
 - 	}
 - 	/** Contracts each corner. */
 - 	Rect shrink(Vec delta) const {
 - 		Rect r;
 - 		r.pos = pos.plus(delta);
 - 		r.size = size.minus(delta.mult(2.f));
 - 		return r;
 - 	}
 - 	/** Returns `pos + size * p` */
 - 	Vec interpolate(Vec p) {
 - 		return pos.plus(size.mult(p));
 - 	}
 - 
 - 	// Method aliases
 - 	bool isContaining(Vec v) const {
 - 		return contains(v);
 - 	}
 - 	bool isIntersecting(Rect r) const {
 - 		return intersects(r);
 - 	}
 - 	bool isEqual(Rect r) const {
 - 		return equals(r);
 - 	}
 - };
 - 
 - 
 - inline Vec Vec::clamp(Rect bound) const {
 - 	return Vec(
 - 		math::clamp(x, bound.pos.x, bound.pos.x + bound.size.x),
 - 		math::clamp(y, bound.pos.y, bound.pos.y + bound.size.y)
 - 	);
 - }
 - 
 - inline Vec Vec::clampSafe(Rect bound) const {
 - 	return Vec(
 - 		math::clampSafe(x, bound.pos.x, bound.pos.x + bound.size.x),
 - 		math::clampSafe(y, bound.pos.y, bound.pos.y + bound.size.y)
 - 	);
 - }
 - 
 - 
 - // Operator overloads for Vec
 - inline Vec operator+(const Vec& a) {
 - 	return a;
 - }
 - inline Vec operator-(const Vec& a) {
 - 	return a.neg();
 - }
 - inline Vec operator+(const Vec& a, const Vec& b) {
 - 	return a.plus(b);
 - }
 - inline Vec operator-(const Vec& a, const Vec& b) {
 - 	return a.minus(b);
 - }
 - inline Vec operator*(const Vec& a, const Vec& b) {
 - 	return a.mult(b);
 - }
 - inline Vec operator*(const Vec& a, const float& b) {
 - 	return a.mult(b);
 - }
 - inline Vec operator*(const float& a, const Vec& b) {
 - 	return b.mult(a);
 - }
 - inline Vec operator/(const Vec& a, const Vec& b) {
 - 	return a.div(b);
 - }
 - inline Vec operator/(const Vec& a, const float& b) {
 - 	return a.div(b);
 - }
 - inline Vec operator+=(Vec& a, const Vec& b) {
 - 	return a = a.plus(b);
 - }
 - inline Vec operator-=(Vec& a, const Vec& b) {
 - 	return a = a.minus(b);
 - }
 - inline Vec operator*=(Vec& a, const Vec& b) {
 - 	return a = a.mult(b);
 - }
 - inline Vec operator*=(Vec& a, const float& b) {
 - 	return a = a.mult(b);
 - }
 - inline Vec operator/=(Vec& a, const Vec& b) {
 - 	return a = a.div(b);
 - }
 - inline Vec operator/=(Vec& a, const float& b) {
 - 	return a = a.div(b);
 - }
 - inline bool operator==(const Vec& a, const Vec& b) {
 - 	return a.equals(b);
 - }
 - inline bool operator!=(const Vec& a, const Vec& b) {
 - 	return !a.equals(b);
 - }
 - 
 - 
 - // Operator overloads for Rect
 - inline bool operator==(const Rect& a, const Rect& b) {
 - 	return a.equals(b);
 - }
 - inline bool operator!=(const Rect& a, const Rect& b) {
 - 	return !a.equals(b);
 - }
 - 
 - 
 - /** Expands a Vec and Rect into a comma-separated list.
 - Useful for print debugging.
 - 
 - 	printf("(%f %f) (%f %f %f %f)", VEC_ARGS(v), RECT_ARGS(r));
 - 
 - Or passing the values to a C function.
 - 
 - 	nvgRect(vg, RECT_ARGS(r));
 - */
 - #define VEC_ARGS(v) (v).x, (v).y
 - #define RECT_ARGS(r) (r).pos.x, (r).pos.y, (r).size.x, (r).size.y
 - 
 - 
 - } // namespace math
 - } // namespace rack
 
 
  |