|
- #pragma once
- #include "dsp/common.hpp"
-
-
- namespace rack {
- namespace dsp {
-
-
- /** The callback function `f` in each of these stepping functions must have the signature
-
- void f(float t, const float x[], float dxdt[])
-
- A capturing lambda is ideal for this.
- For example, the following solves the system x''(t) = -x(t) using a fixed timestep of 0.01 and initial conditions x(0) = 1, x'(0) = 0.
-
- float x[2] = {1.f, 0.f};
- float dt = 0.01f;
- for (float t = 0.f; t < 1.f; t += dt) {
- rack::ode::stepRK4(t, dt, x, 2, [&](float t, const float x[], float dxdt[]) {
- dxdt[0] = x[1];
- dxdt[1] = -x[0];
- });
- printf("%f\n", x[0]);
- }
-
- */
-
- /** Solves an ODE system using the 1st order Euler method */
- template<typename F>
- void stepEuler(float t, float dt, float x[], int len, F f) {
- float k[len];
-
- f(t, x, k);
- for (int i = 0; i < len; i++) {
- x[i] += dt * k[i];
- }
- }
-
- /** Solves an ODE system using the 2nd order Runge-Kutta method */
- template<typename F>
- void stepRK2(float t, float dt, float x[], int len, F f) {
- float k1[len];
- float k2[len];
- float yi[len];
-
- f(t, x, k1);
-
- for (int i = 0; i < len; i++) {
- yi[i] = x[i] + k1[i] * dt / 2.f;
- }
- f(t + dt / 2.f, yi, k2);
-
- for (int i = 0; i < len; i++) {
- x[i] += dt * k2[i];
- }
- }
-
- /** Solves an ODE system using the 4th order Runge-Kutta method */
- template<typename F>
- void stepRK4(float t, float dt, float x[], int len, F f) {
- float k1[len];
- float k2[len];
- float k3[len];
- float k4[len];
- float yi[len];
-
- f(t, x, k1);
-
- for (int i = 0; i < len; i++) {
- yi[i] = x[i] + k1[i] * dt / 2.f;
- }
- f(t + dt / 2.f, yi, k2);
-
- for (int i = 0; i < len; i++) {
- yi[i] = x[i] + k2[i] * dt / 2.f;
- }
- f(t + dt / 2.f, yi, k3);
-
- for (int i = 0; i < len; i++) {
- yi[i] = x[i] + k3[i] * dt;
- }
- f(t + dt, yi, k4);
-
- for (int i = 0; i < len; i++) {
- x[i] += dt * (k1[i] + 2.f * k2[i] + 2.f * k3[i] + k4[i]) / 6.f;
- }
- }
-
-
- } // namespace dsp
- } // namespace rack
|