|
- #pragma once
-
- #include <math.h>
-
-
- namespace rack {
-
- /** Limits a value between a minimum and maximum
- If min > max for some reason, returns min
- */
- inline float clampf(float x, float min, float max) {
- if (x > max)
- x = max;
- if (x < min)
- x = min;
- return x;
- }
-
- /** If the magnitude of x if less than eps, return 0 */
- inline float chopf(float x, float eps) {
- if (x < eps && x > -eps)
- return 0.0;
- return x;
- }
-
- inline float mapf(float x, float xMin, float xMax, float yMin, float yMax) {
- return yMin + (x - xMin) / (xMax - xMin) * (yMax - yMin);
- }
-
- inline float crossf(float a, float b, float frac) {
- return (1.0 - frac) * a + frac * b;
- }
-
- inline int mini(int a, int b) {
- return a < b ? a : b;
- }
-
- inline int maxi(int a, int b) {
- return a > b ? a : b;
- }
-
- inline float quadraticBipolar(float x) {
- float x2 = x*x;
- return x >= 0.0 ? x2 : -x2;
- }
-
- inline float cubic(float x) {
- // optimal with --fast-math
- return x*x*x;
- }
-
- inline float quarticBipolar(float x) {
- float x2 = x*x;
- float x4 = x2*x2;
- return x >= 0.0 ? x4 : -x4;
- }
-
- inline float quintic(float x) {
- // optimal with --fast-math
- return x*x*x*x*x;
- }
-
- // Euclidean modulus, always returns 0 <= mod < base for positive base
- // Assumes this architecture's division is non-Euclidean
- inline int eucMod(int a, int base) {
- int mod = a % base;
- return mod < 0 ? mod + base : mod;
- }
-
- inline float getf(const float *p, float v = 0.0) {
- return p ? *p : v;
- }
-
- inline void setf(float *p, float v) {
- if (p)
- *p = v;
- }
-
- /** Linearly interpolate an array `p` with index `x`
- Assumes that the array at `p` is of length at least ceil(x)+1.
- */
- inline float interpf(const float *p, float x) {
- int xi = x;
- float xf = x - xi;
- return crossf(p[xi], p[xi+1], xf);
- }
-
- ////////////////////
- // 2D float vector
- ////////////////////
-
- struct Vec {
- float x, y;
-
- Vec() : x(0.0), y(0.0) {}
- Vec(float x, float y) : x(x), y(y) {}
-
- Vec neg() {
- return Vec(-x, -y);
- }
- Vec plus(Vec b) {
- return Vec(x + b.x, y + b.y);
- }
- Vec minus(Vec b) {
- return Vec(x - b.x, y - b.y);
- }
- Vec mult(float s) {
- return Vec(x * s, y * s);
- }
- Vec div(float s) {
- return Vec(x / s, y / s);
- }
- float dot(Vec b) {
- return x * b.x + y * b.y;
- }
- float norm() {
- return hypotf(x, y);
- }
- Vec min(Vec b) {
- return Vec(fminf(x, b.x), fminf(y, b.y));
- }
- Vec max(Vec b) {
- return Vec(fmaxf(x, b.x), fmaxf(y, b.y));
- }
- Vec round() {
- return Vec(roundf(x), roundf(y));
- }
- };
-
-
- struct Rect {
- Vec pos;
- Vec size;
-
- Rect() {}
- Rect(Vec pos, Vec size) : pos(pos), size(size) {}
-
- /** Returns whether this Rect contains another Rect, inclusive on the top/left, non-inclusive on the bottom/right */
- bool contains(Vec v) {
- return pos.x <= v.x && v.x < pos.x + size.x
- && pos.y <= v.y && v.y < pos.y + size.y;
- }
- /** Returns whether this Rect overlaps with another Rect */
- bool intersects(Rect r) {
- return (pos.x + size.x > r.pos.x && r.pos.x + r.size.x > pos.x)
- && (pos.y + size.y > r.pos.y && r.pos.y + r.size.y > pos.y);
- }
- Vec getCenter() {
- return pos.plus(size.mult(0.5));
- }
- Vec getTopRight() {
- return pos.plus(Vec(size.x, 0.0));
- }
- Vec getBottomLeft() {
- return pos.plus(Vec(0.0, size.y));
- }
- Vec getBottomRight() {
- return pos.plus(size);
- }
- /** Clamps the position to fix inside a bounding box */
- Rect clamp(Rect bound) {
- Rect r;
- r.size = size;
- r.pos.x = clampf(pos.x, bound.pos.x, bound.pos.x + bound.size.x - size.x);
- r.pos.y = clampf(pos.y, bound.pos.y, bound.pos.y + bound.size.y - size.y);
- return r;
- }
- };
-
- ////////////////////
- // Simple FFT implementation
- ////////////////////
-
- // Derived from the Italian Wikipedia article for FFT
- // https://it.wikipedia.org/wiki/Trasformata_di_Fourier_veloce
- // If you need speed, use KissFFT, pffft, etc instead.
-
- inline int log2i(int n) {
- int i = 0;
- while (n >>= 1) {
- i++;
- }
- return i;
- }
-
- inline bool isPowerOf2(int n) {
- return n > 0 && (n & (n-1)) == 0;
- }
-
- /*
- inline int reverse(int N, int n) //calculating revers number
- {
- int j, p = 0;
- for(j = 1; j <= log2i(N); j++) {
- if(n & (1 << (log2i(N) - j)))
- p |= 1 << (j - 1);
- }
- return p;
- }
-
- inline void ordina(complex<double>* f1, int N) //using the reverse order in the array
- {
- complex<double> f2[MAX];
- for(int i = 0; i < N; i++)
- f2[i] = f1[reverse(N, i)];
- for(int j = 0; j < N; j++)
- f1[j] = f2[j];
- }
-
- inline void transform(complex<double>* f, int N)
- {
- ordina(f, N); //first: reverse order
- complex<double> *W;
- W = (complex<double> *)malloc(N / 2 * sizeof(complex<double>));
- W[1] = polar(1., -2. * M_PI / N);
- W[0] = 1;
- for(int i = 2; i < N / 2; i++)
- W[i] = pow(W[1], i);
- int n = 1;
- int a = N / 2;
- for(int j = 0; j < log2i(N); j++) {
- for(int i = 0; i < N; i++) {
- if(!(i & n)) {
- complex<double> temp = f[i];
- complex<double> Temp = W[(i * a) % (n * a)] * f[i + n];
- f[i] = temp + Temp;
- f[i + n] = temp - Temp;
- }
- }
- n *= 2;
- a = a / 2;
- }
- }
-
- inline void FFT(complex<double>* f, int N, double d)
- {
- transform(f, N);
- for(int i = 0; i < N; i++)
- f[i] *= d; //multiplying by step
- }
- */
-
-
-
- } // namespace rack
|