// Eguitar.cpp // // This is a program to create a simple electric guitar model using // the STK Guitar class. The is model is derived in part from an // implementation made by Nicholas Donaldson at McGill University in // 2009. The distortion model is poor, using a simple soft-clipping // expression provided by Charles R. Sullivan in "Extending the // Karplus-String Algorithm to Synthesize Electric Guitar Timbres with // Distortion and Feedback," Computer Music Journal, Vol.14 No.3, Fall // 1990. Other distortion models would be better, such as that found // in Pakarinen and Yeh's "A Review of Digital Techniques for Modeling // Vacuum-Tube Guitar Amplifiers," Computer Music Journal, Vol 33 // No. 2, Summer 2009. // // This program performs simple voice management if all noteOn and // noteOff events are on channel 0. Otherwise, channel values > 0 are // mapped to specific string numbers. By default, the program creates // a 6-string guitar. If the normalized noteOn() velocity is < 0.2, a // string is undamped but not plucked (this is implemented in the // stk::Guitar class). Thus, you can lightly depress a key on a MIDI // keyboard and then experiment with string coupling. // // The Tcl/Tk GUI allows you to experiment with various parameter // settings and that can be used in conjunction with a MIDI keyboard // as: wish < tcl/EGuitar.tcl | ./eguitar -or -ip -im 1 // // For the moment, this program does not support pitch bends. // // Gary P. Scavone, McGill University 2012. #include "Guitar.h" #include "SKINImsg.h" #include "WvOut.h" #include "JCRev.h" #include "Skini.h" #include "RtAudio.h" #include "Delay.h" #include "Cubic.h" // Miscellaneous command-line parsing and instrument allocation // functions are defined in utilites.cpp ... specific to this program. #include "utilities.h" #include #include #include #include using std::min; bool done; static void finish(int ignore){ done = true; } using namespace stk; const unsigned int nStrings = 6; // Data structure for string information. struct StringInfo{ bool inUse; // is this string being used? unsigned int iNote; // note number associated with this string StringInfo() : inUse(false), iNote(0) {}; }; // The TickData structure holds all the class instances and data that // are shared by the various processing functions. struct TickData { WvOut **wvout; Guitar *guitar; StringInfo voices[nStrings]; JCRev reverb; Messager messager; Skini::Message message; StkFloat volume; StkFloat t60; unsigned int nWvOuts; int channels; int counter; bool realtime; bool settling; bool haveMessage; int keysDown; StkFloat feedbackGain; StkFloat oldFeedbackGain; StkFloat distortionGain; StkFloat distortionMix; Delay feedbackDelay; Cubic distortion; StkFloat feedbackSample; // Default constructor. TickData() : wvout(0), volume(1.0), t60(0.75), nWvOuts(0), channels(2), counter(0), realtime( false ), settling( false ), haveMessage( false ), keysDown(0), feedbackSample( 0.0 ) {} }; #define DELTA_CONTROL_TICKS 30 // default sample frames between control input checks // The processMessage() function encapsulates the handling of control // messages. It can be easily relocated within a program structure // depending on the desired scheduling scheme. void processMessage( TickData* data ) { register StkFloat value1 = data->message.floatValues[0]; register StkFloat value2 = data->message.floatValues[1]; unsigned int channel = (unsigned int) data->message.channel; switch( data->message.type ) { case __SK_Exit_: if ( data->settling == false ) goto settle; done = true; return; case __SK_NoteOn_: if ( value2 > 0.0 ) { // velocity > 0 unsigned int iNote = data->message.intValues[0]; if ( channel == 0 ) { // do basic voice management unsigned int s; if ( data->keysDown >= (int) nStrings ) break; // ignore extra note on's // Find first unused string for ( s=0; svoices[s].inUse ) break; if ( s == nStrings ) break; data->voices[s].inUse = true; data->voices[s].iNote = iNote; data->guitar->noteOn( Midi2Pitch[iNote], value2 * ONE_OVER_128, s ); data->keysDown++; // If first key down, turn on feedback gain if ( data->keysDown == 1 ) data->feedbackGain = data->oldFeedbackGain; } else if ( channel <= nStrings ) data->guitar->noteOn( Midi2Pitch[iNote], value2 * ONE_OVER_128, channel-1 ); break; } // else a note off, so continue to next case case __SK_NoteOff_: if ( channel == 0 ) { // do basic voice management if ( !data->keysDown ) break; // Search for the released note unsigned int s, iNote; iNote = data->message.intValues[0]; for ( s=0; svoices[s].inUse && iNote == data->voices[s].iNote ) break; if ( s == nStrings ) break; data->voices[s].inUse = false; data->guitar->noteOff( value2 * ONE_OVER_128, s ); data->keysDown--; if ( data->keysDown == 0 ) { // turn off feedback gain and clear delay data->feedbackDelay.clear(); data->feedbackGain = 0.0; } } else if ( channel <= nStrings ) data->guitar->noteOff( value2 * ONE_OVER_128, channel-1 ); break; case __SK_ControlChange_: if ( value1 == 44.0 ) data->reverb.setEffectMix( value2 * ONE_OVER_128 ); else if ( value1 == 7.0 ) data->volume = value2 * ONE_OVER_128; else if ( value1 == 27 ) // feedback delay data->feedbackDelay.setDelay( (value2 * Stk::sampleRate() / 127) + 1 ); else if ( value1 == 28 ) { // feedback gain //data->oldFeedbackGain = value2 * 0.01 / 127.0; data->oldFeedbackGain = value2 * 0.02 / 127.0; data->feedbackGain = data->oldFeedbackGain; } else if ( value1 == 71 ) // pre-distortion gain data->distortionGain = 2.0 * value2 * ONE_OVER_128; else if ( value1 == 72 ) // distortion mix data->distortionMix = value2 * ONE_OVER_128; else data->guitar->controlChange( (int) value1, value2 ); break; case __SK_AfterTouch_: data->guitar->controlChange( 128, value1 ); break; case __SK_PitchBend_: // Implement me! break; case __SK_Volume_: data->volume = value1 * ONE_OVER_128; break; } // end of switch data->haveMessage = false; return; settle: // Exit and program change messages are preceeded with a short settling period. for ( unsigned int s=0; svoices[s].inUse ) data->guitar->noteOff( 0.6, s ); data->counter = (int) (0.3 * data->t60 * Stk::sampleRate()); data->settling = true; } // The tick() function handles sample computation and scheduling of // control updates. If doing realtime audio output, it will be called // automatically when the system needs a new buffer of audio samples. int tick( void *outputBuffer, void *inputBuffer, unsigned int nBufferFrames, double streamTime, RtAudioStreamStatus status, void *dataPointer ) { TickData *data = (TickData *) dataPointer; register StkFloat temp, sample, *samples = (StkFloat *) outputBuffer; int counter, nTicks = (int) nBufferFrames; while ( nTicks > 0 && !done ) { if ( !data->haveMessage ) { data->messager.popMessage( data->message ); if ( data->message.type > 0 ) { data->counter = (long) (data->message.time * Stk::sampleRate()); data->haveMessage = true; } else data->counter = DELTA_CONTROL_TICKS; } counter = min( nTicks, data->counter ); data->counter -= counter; for ( int i=0; ifeedbackDelay.tick( data->feedbackSample * data->feedbackGain ); sample = data->guitar->tick( sample ); // Apply distortion (x - x^3/3) and mix temp = data->distortionGain * sample; if ( temp > 0.6666667 ) temp = 0.6666667; else if ( temp < -0.6666667 ) temp = -0.6666667; else temp = data->distortion.tick( temp ); sample = (data->distortionMix * temp) + ((1 - data->distortionMix) * sample ); data->feedbackSample = sample; // Tick instrument and apply reverb sample = data->volume * data->reverb.tick( sample ); for ( unsigned int j=0; jnWvOuts; j++ ) data->wvout[j]->tick( sample ); if ( data->realtime ) for ( int k=0; kchannels; k++ ) *samples++ = sample; nTicks--; } if ( nTicks == 0 ) break; // Process control messages. if ( data->haveMessage ) processMessage( data ); } return 0; } int main( int argc, char *argv[] ) { TickData data; int i; #if defined(__STK_REALTIME__) RtAudio dac; #endif // If you want to change the default sample rate (set in Stk.h), do // it before instantiating any objects! If the sample rate is // specified in the command line, it will override this setting. Stk::setSampleRate( 44100.0 ); // By default, warning messages are not printed. If we want to see // them, we need to specify that here. Stk::showWarnings( true ); // Check the command-line arguments for errors and to determine // the number of WvOut objects to be instantiated (in utilities.cpp). data.nWvOuts = checkArgs( argc, argv ); data.wvout = (WvOut **) calloc( data.nWvOuts, sizeof(WvOut *) ); // Parse the command-line flags, instantiate WvOut objects, and // instantiate the input message controller (in utilities.cpp). try { data.realtime = parseArgs( argc, argv, data.wvout, data.messager ); } catch (StkError &) { goto cleanup; } // If realtime output, allocate the dac here. #if defined(__STK_REALTIME__) if ( data.realtime ) { RtAudioFormat format = ( sizeof(StkFloat) == 8 ) ? RTAUDIO_FLOAT64 : RTAUDIO_FLOAT32; RtAudio::StreamParameters parameters; parameters.deviceId = dac.getDefaultOutputDevice(); parameters.nChannels = data.channels; unsigned int bufferFrames = RT_BUFFER_SIZE; try { dac.openStream( ¶meters, NULL, format, (unsigned int)Stk::sampleRate(), &bufferFrames, &tick, (void *)&data ); } catch ( RtAudioError& error ) { error.printMessage(); goto cleanup; } } #endif // Set the reverb parameters. data.reverb.setT60( data.t60 ); data.reverb.setEffectMix( 0.2 ); // Allocate guitar data.guitar = new Guitar( nStrings ); // Configure distortion and feedback. data.distortion.setThreshold( 2.0 / 3.0 ); data.distortion.setA1( 1.0 ); data.distortion.setA2( 0.0 ); data.distortion.setA3( -1.0 / 3.0 ); data.distortionMix = 0.9; data.distortionGain = 1.0; data.feedbackDelay.setMaximumDelay( (unsigned long int)( 1.1 * Stk::sampleRate() ) ); data.feedbackDelay.setDelay( 20000 ); data.feedbackGain = 0.001; data.oldFeedbackGain = 0.001; // Install an interrupt handler function. (void) signal(SIGINT, finish); // If realtime output, set our callback function and start the dac. #if defined(__STK_REALTIME__) if ( data.realtime ) { try { dac.startStream(); } catch ( RtAudioError &error ) { error.printMessage(); goto cleanup; } } #endif // Setup finished. while ( !done ) { #if defined(__STK_REALTIME__) if ( data.realtime ) // Periodically check "done" status. Stk::sleep( 200 ); else #endif // Call the "tick" function to process data. tick( NULL, NULL, 256, 0, 0, (void *)&data ); } // Shut down the output stream. #if defined(__STK_REALTIME__) if ( data.realtime ) { try { dac.closeStream(); } catch ( RtAudioError& error ) { error.printMessage(); } } #endif cleanup: for ( i=0; i<(int)data.nWvOuts; i++ ) delete data.wvout[i]; free( data.wvout ); delete data.guitar; std::cout << "\nStk eguitar finished ... goodbye.\n\n"; return 0; }