#pragma once #include #include #include namespace rack { //////////////////// // integer functions //////////////////// inline int mini(int a, int b) { return a < b ? a : b; } inline int maxi(int a, int b) { return a > b ? a : b; } /** Limits a value between a minimum and maximum */ inline int clampi(int x, int min, int max) { return x > max ? max : x < min ? min : x; } inline int absi(int a) { return a >= 0 ? a : -a; } // Euclidean modulus, always returns 0 <= mod < base for positive base // Assumes this architecture's division is non-Euclidean inline int eucmodi(int a, int base) { int mod = a % base; return mod < 0 ? mod + base : mod; } inline int log2i(int n) { int i = 0; while (n >>= 1) { i++; } return i; } inline bool ispow2i(int n) { return n > 0 && (n & (n - 1)) == 0; } //////////////////// // float functions //////////////////// /** Returns 1.0 for positive numbers and -1.0 for negative numbers (including positive/negative zero) */ inline float sgnf(float x) { return copysignf(1.0, x); } inline float eucmodf(float a, float base) { float mod = fmodf(a, base); return mod < 0.0 ? mod + base : mod; } inline float nearf(float a, float b, float epsilon = 1e-6) { return fabsf(a - b) <= epsilon; } /** Limits a value between a minimum and maximum If min > max, the limits are switched */ inline float clampf(float x, float min, float max) { return fmaxf(fminf(x, fmaxf(min, max)), fminf(min, max)); } /** If the magnitude of x if less than eps, return 0 */ inline float chopf(float x, float eps) { return -eps < x && x < eps ? 0.0 : x; } inline float rescalef(float x, float xMin, float xMax, float yMin, float yMax) { return yMin + (x - xMin) / (xMax - xMin) * (yMax - yMin); } inline float crossf(float a, float b, float frac) { return a + frac * (b - a); } inline float quadraticBipolar(float x) { float x2 = x*x; return x >= 0.0 ? x2 : -x2; } inline float cubic(float x) { return x*x*x; } inline float quarticBipolar(float x) { return x >= 0.0 ? x*x*x*x : -x*x*x*x; } inline float quintic(float x) { // optimal with --fast-math return x*x*x*x*x; } inline float sqrtBipolar(float x) { return x >= 0.0 ? sqrtf(x) : -sqrtf(-x); } /** This is pretty much a scaled sinh */ inline float exponentialBipolar(float b, float x) { const float a = b - 1.0 / b; return (powf(b, x) - powf(b, -x)) / a; } inline float sincf(float x) { if (x == 0.0) return 1.0; x *= M_PI; return sinf(x) / x; } inline float getf(const float *p, float v = 0.0) { return p ? *p : v; } inline void setf(float *p, float v) { if (p) *p = v; } /** Linearly interpolate an array `p` with index `x` Assumes that the array at `p` is of length at least floor(x)+1. */ inline float interpf(const float *p, float x) { int xi = x; float xf = x - xi; return crossf(p[xi], p[xi+1], xf); } /** Complex multiply c = a * b It is of course acceptable to reuse arguments i.e. cmultf(&ar, &ai, ar, ai, br, bi) */ inline void cmultf(float *cr, float *ci, float ar, float ai, float br, float bi) { *cr = ar * br - ai * bi; *ci = ar * bi + ai * br; } //////////////////// // 2D float vector //////////////////// struct Rect; struct Vec { float x, y; Vec() : x(0.0), y(0.0) {} Vec(float x, float y) : x(x), y(y) {} Vec neg() { return Vec(-x, -y); } Vec plus(Vec b) { return Vec(x + b.x, y + b.y); } Vec minus(Vec b) { return Vec(x - b.x, y - b.y); } Vec mult(float s) { return Vec(x * s, y * s); } Vec mult(Vec b) { return Vec(x * b.x, y * b.y); } Vec div(float s) { return Vec(x / s, y / s); } Vec div(Vec b) { return Vec(x / b.x, y / b.y); } float dot(Vec b) { return x * b.x + y * b.y; } float norm() { return hypotf(x, y); } Vec min(Vec b) { return Vec(fminf(x, b.x), fminf(y, b.y)); } Vec max(Vec b) { return Vec(fmaxf(x, b.x), fmaxf(y, b.y)); } Vec round() { return Vec(roundf(x), roundf(y)); } Vec floor() { return Vec(floorf(x), floorf(y)); } Vec ceil() { return Vec(ceilf(x), ceilf(y)); } bool isEqual(Vec b) { return x == b.x && y == b.y; } bool isZero() { return x == 0.0 && y == 0.0; } bool isFinite() { return std::isfinite(x) && std::isfinite(y); } Vec clamp(Rect bound); }; struct Rect { Vec pos; Vec size; Rect() {} Rect(Vec pos, Vec size) : pos(pos), size(size) {} static Rect fromMinMax(Vec min, Vec max) { return Rect(min, max.minus(min)); } /** Returns whether this Rect contains an entire point, inclusive on the top/left, non-inclusive on the bottom/right */ bool contains(Vec v) { return pos.x <= v.x && v.x < pos.x + size.x && pos.y <= v.y && v.y < pos.y + size.y; } /** Returns whether this Rect contains an entire Rect */ bool contains(Rect r) { return pos.x <= r.pos.x && r.pos.x + r.size.x <= pos.x + size.x && pos.y <= r.pos.y && r.pos.y + r.size.y <= pos.y + size.y; } /** Returns whether this Rect overlaps with another Rect */ bool intersects(Rect r) { return (pos.x + size.x > r.pos.x && r.pos.x + r.size.x > pos.x) && (pos.y + size.y > r.pos.y && r.pos.y + r.size.y > pos.y); } bool isEqual(Rect r) { return pos.isEqual(r.pos) && size.isEqual(r.size); } Vec getCenter() { return pos.plus(size.mult(0.5)); } Vec getTopRight() { return pos.plus(Vec(size.x, 0.0)); } Vec getBottomLeft() { return pos.plus(Vec(0.0, size.y)); } Vec getBottomRight() { return pos.plus(size); } /** Clamps the edges of the rectangle to fit within a bound */ Rect clamp(Rect bound) { Rect r; r.pos.x = clampf(pos.x, bound.pos.x, bound.pos.x + bound.size.x); r.pos.y = clampf(pos.y, bound.pos.y, bound.pos.y + bound.size.y); r.size.x = clampf(pos.x + size.x, bound.pos.x, bound.pos.x + bound.size.x) - r.pos.x; r.size.y = clampf(pos.y + size.y, bound.pos.y, bound.pos.y + bound.size.y) - r.pos.y; return r; } /** Nudges the position to fix inside a bounding box */ Rect nudge(Rect bound) { Rect r; r.size = size; r.pos.x = clampf(pos.x, bound.pos.x, bound.pos.x + bound.size.x - size.x); r.pos.y = clampf(pos.y, bound.pos.y, bound.pos.y + bound.size.y - size.y); return r; } /** Expands this Rect to contain `other` */ Rect expand(Rect other) { Rect r; r.pos.x = fminf(pos.x, other.pos.x); r.pos.y = fminf(pos.y, other.pos.y); r.size.x = fmaxf(pos.x + size.x, other.pos.x + other.size.x) - r.pos.x; r.size.y = fmaxf(pos.y + size.y, other.pos.y + other.size.y) - r.pos.y; return r; } /** Returns a Rect with its position set to zero */ Rect zeroPos() { Rect r; r.size = size; return r; } }; inline Vec Vec::clamp(Rect bound) { return Vec( clampf(x, bound.pos.x, bound.pos.x + bound.size.x), clampf(y, bound.pos.y, bound.pos.y + bound.size.y)); } } // namespace rack