/***************************************************/ /*! \class BlowHole \brief STK clarinet physical model with one register hole and one tonehole. This class is based on the clarinet model, with the addition of a two-port register hole and a three-port dynamic tonehole implementation, as discussed by Scavone and Cook (1998). In this implementation, the distances between the reed/register hole and tonehole/bell are fixed. As a result, both the tonehole and register hole will have variable influence on the playing frequency, which is dependent on the length of the air column. In addition, the highest playing freqeuency is limited by these fixed lengths. This is a digital waveguide model, making its use possibly subject to patents held by Stanford University, Yamaha, and others. Control Change Numbers: - Reed Stiffness = 2 - Noise Gain = 4 - Tonehole State = 11 - Register State = 1 - Breath Pressure = 128 by Perry R. Cook and Gary P. Scavone, 1995--2017. */ /***************************************************/ #include "BlowHole.h" #include "SKINImsg.h" #include namespace stk { BlowHole :: BlowHole( StkFloat lowestFrequency ) { if ( lowestFrequency <= 0.0 ) { oStream_ << "BlowHole::BlowHole: argument is less than or equal to zero!"; handleError( StkError::FUNCTION_ARGUMENT ); } unsigned long nDelays = (unsigned long) ( 0.5 * Stk::sampleRate() / lowestFrequency ); // delays[0] is the delay line between the reed and the register vent. delays_[0].setDelay( 5.0 * Stk::sampleRate() / 22050.0 ); // delays[1] is the delay line between the register vent and the tonehole. delays_[1].setMaximumDelay( nDelays + 1 ); // delays[2] is the delay line between the tonehole and the end of the bore. delays_[2].setDelay( 4.0 * Stk::sampleRate() / 22050.0 ); reedTable_.setOffset( 0.7 ); reedTable_.setSlope( -0.3 ); // Calculate the initial tonehole three-port scattering coefficient StkFloat rb = 0.0075; // main bore radius StkFloat rth = 0.003; // tonehole radius scatter_ = -pow(rth,2) / ( pow(rth,2) + 2*pow(rb,2) ); // Calculate tonehole coefficients and set for initially open. StkFloat te = 1.4 * rth; // effective length of the open hole thCoeff_ = (te*2*Stk::sampleRate() - 347.23) / (te*2*Stk::sampleRate() + 347.23); tonehole_.setA1( -thCoeff_ ); tonehole_.setB0( thCoeff_ ); tonehole_.setB1( -1.0 ); // Calculate register hole filter coefficients double r_rh = 0.0015; // register vent radius te = 1.4 * r_rh; // effective length of the open hole double xi = 0.0; // series resistance term double zeta = 347.23 + 2*PI*pow(rb,2)*xi/1.1769; double psi = 2*PI*pow(rb,2)*te / (PI*pow(r_rh,2)); StkFloat rhCoeff = (zeta - 2 * Stk::sampleRate() * psi) / (zeta + 2 * Stk::sampleRate() * psi); rhGain_ = -347.23 / (zeta + 2 * Stk::sampleRate() * psi); vent_.setA1( rhCoeff ); vent_.setB0( 1.0 ); vent_.setB1( 1.0 ); // Start with register vent closed vent_.setGain( 0.0 ); vibrato_.setFrequency((StkFloat) 5.735); outputGain_ = 1.0; noiseGain_ = 0.2; vibratoGain_ = 0.01; this->setFrequency( 220.0 ); this->clear(); } BlowHole :: ~BlowHole( void ) { } void BlowHole :: clear( void ) { delays_[0].clear(); delays_[1].clear(); delays_[2].clear(); filter_.tick( 0.0 ); tonehole_.tick( 0.0 ); vent_.tick( 0.0 ); } void BlowHole :: setFrequency( StkFloat frequency ) { #if defined(_STK_DEBUG_) if ( frequency <= 0.0 ) { oStream_ << "BlowHole::setFrequency: argument is less than or equal to zero!"; handleError( StkError::WARNING ); return; } #endif // Account for approximate filter delays and one sample "lastOut" delay. StkFloat delay = ( Stk::sampleRate() / frequency ) * 0.5 - 3.5; delay -= delays_[0].getDelay() + delays_[2].getDelay(); delays_[1].setDelay( delay ); } void BlowHole :: setVent( StkFloat newValue ) { // This method allows setting of the register vent "open-ness" at // any point between "Open" (newValue = 1) and "Closed" // (newValue = 0). StkFloat gain; if ( newValue <= 0.0 ) gain = 0.0; else if ( newValue >= 1.0 ) gain = rhGain_; else gain = newValue * rhGain_; vent_.setGain( gain ); } void BlowHole :: setTonehole( StkFloat newValue ) { // This method allows setting of the tonehole "open-ness" at // any point between "Open" (newValue = 1) and "Closed" // (newValue = 0). StkFloat new_coeff; if ( newValue <= 0.0 ) new_coeff = 0.9995; else if ( newValue >= 1.0 ) new_coeff = thCoeff_; else new_coeff = ( newValue * (thCoeff_ - 0.9995) ) + 0.9995; tonehole_.setA1( -new_coeff ); tonehole_.setB0( new_coeff ); } void BlowHole :: startBlowing( StkFloat amplitude, StkFloat rate ) { if ( amplitude <= 0.0 || rate <= 0.0 ) { oStream_ << "BlowHole::startBlowing: one or more arguments is less than or equal to zero!"; handleError( StkError::WARNING ); return; } envelope_.setRate( rate ); envelope_.setTarget( amplitude ); } void BlowHole :: stopBlowing( StkFloat rate ) { if ( rate <= 0.0 ) { oStream_ << "BlowHole::stopBlowing: argument is less than or equal to zero!"; handleError( StkError::WARNING ); return; } envelope_.setRate( rate ); envelope_.setTarget( 0.0 ); } void BlowHole :: noteOn( StkFloat frequency, StkFloat amplitude ) { this->setFrequency( frequency ); this->startBlowing( 0.55 + (amplitude * 0.30), amplitude * 0.005 ); outputGain_ = amplitude + 0.001; } void BlowHole :: noteOff( StkFloat amplitude ) { this->stopBlowing( amplitude * 0.01 ); } void BlowHole :: controlChange( int number, StkFloat value ) { #if defined(_STK_DEBUG_) if ( Stk::inRange( value, 0.0, 128.0 ) == false ) { oStream_ << "BlowHole::controlChange: value (" << value << ") is out of range!"; handleError( StkError::WARNING ); return; } #endif StkFloat normalizedValue = value * ONE_OVER_128; if (number == __SK_ReedStiffness_) // 2 reedTable_.setSlope( -0.44 + (0.26 * normalizedValue) ); else if (number == __SK_NoiseLevel_) // 4 noiseGain_ = ( normalizedValue * 0.4); else if (number == __SK_ModFrequency_) // 11 this->setTonehole( normalizedValue ); else if (number == __SK_ModWheel_) // 1 this->setVent( normalizedValue ); else if (number == __SK_AfterTouch_Cont_) // 128 envelope_.setValue( normalizedValue ); #if defined(_STK_DEBUG_) else { oStream_ << "BlowHole::controlChange: undefined control number (" << number << ")!"; handleError( StkError::WARNING ); } #endif } } // stk namespace