#pragma once #include #include // for std::min, max #include namespace rack { /** Extends `` with extra functions and types */ namespace math { //////////////////// // basic integer functions //////////////////// /** Returns true if `x` is odd. */ template bool isEven(T x) { return x % 2 == 0; } /** Returns true if `x` is odd. */ template bool isOdd(T x) { return x % 2 != 0; } /** Limits `x` between `a` and `b`. If `b < a`, returns a. */ inline int clamp(int x, int a, int b) { return std::max(std::min(x, b), a); } /** Limits `x` between `a` and `b`. If `b < a`, switches the two values. */ inline int clampSafe(int x, int a, int b) { return (a <= b) ? clamp(x, a, b) : clamp(x, b, a); } /** Euclidean modulus. Always returns `0 <= mod < b`. `b` must be positive. See https://en.wikipedia.org/wiki/Euclidean_division */ inline int eucMod(int a, int b) { int mod = a % b; if (mod < 0) { mod += b; } return mod; } /** Euclidean division. `b` must be positive. */ inline int eucDiv(int a, int b) { int div = a / b; int mod = a % b; if (mod < 0) { div -= 1; } return div; } inline void eucDivMod(int a, int b, int* div, int* mod) { *div = a / b; *mod = a % b; if (*mod < 0) { *div -= 1; *mod += b; } } /** Returns `floor(log_2(n))`, or 0 if `n == 1`. */ inline int log2(int n) { int i = 0; while (n >>= 1) { i++; } return i; } /** Returns whether `n` is a power of 2. */ template bool isPow2(T n) { return n > 0 && (n & (n - 1)) == 0; } /** Returns 1 for positive numbers, -1 for negative numbers, and 0 for zero. See https://en.wikipedia.org/wiki/Sign_function. */ template T sgn(T x) { return x > 0 ? 1 : (x < 0 ? -1 : 0); } //////////////////// // basic float functions //////////////////// /** Limits `x` between `a` and `b`. If `b < a`, returns a. */ inline float clamp(float x, float a = 0.f, float b = 1.f) { return std::fmax(std::fmin(x, b), a); } /** Limits `x` between `a` and `b`. If `b < a`, switches the two values. */ inline float clampSafe(float x, float a = 0.f, float b = 1.f) { return (a <= b) ? clamp(x, a, b) : clamp(x, b, a); } /** Converts -0.f to 0.f. Leaves all other values unchanged. */ #if defined __clang__ // Clang doesn't support disabling individual optimizations, just everything. __attribute__((optnone)) #else __attribute__((optimize("signed-zeros"))) #endif inline float normalizeZero(float x) { return x + 0.f; } /** Euclidean modulus. Always returns `0 <= mod < b`. See https://en.wikipedia.org/wiki/Euclidean_division. */ inline float eucMod(float a, float b) { float mod = std::fmod(a, b); if (mod < 0.f) { mod += b; } return mod; } /** Returns whether `a` is within epsilon distance from `b`. */ inline bool isNear(float a, float b, float epsilon = 1e-6f) { return std::fabs(a - b) <= epsilon; } /** If the magnitude of `x` if less than epsilon, return 0. */ inline float chop(float x, float epsilon = 1e-6f) { return std::fabs(x) <= epsilon ? 0.f : x; } /** Rescales `x` from the range `[xMin, xMax]` to `[yMin, yMax]`. */ inline float rescale(float x, float xMin, float xMax, float yMin, float yMax) { return yMin + (x - xMin) / (xMax - xMin) * (yMax - yMin); } /** Linearly interpolates between `a` and `b`, from `p = 0` to `p = 1`. */ inline float crossfade(float a, float b, float p) { return a + (b - a) * p; } /** Linearly interpolates an array `p` with index `x`. The array at `p` must be at least length `floor(x) + 2`. */ inline float interpolateLinear(const float* p, float x) { int xi = x; float xf = x - xi; return crossfade(p[xi], p[xi + 1], xf); } /** Complex multiplication `c = a * b`. Arguments may be the same pointers. Example: cmultf(ar, ai, br, bi, &ar, &ai); */ inline void complexMult(float ar, float ai, float br, float bi, float* cr, float* ci) { *cr = ar * br - ai * bi; *ci = ar * bi + ai * br; } //////////////////// // 2D vector and rectangle //////////////////// struct Rect; /** 2-dimensional vector of floats, representing a point on the plane for graphics. */ struct Vec { float x = 0.f; float y = 0.f; Vec() {} Vec(float xy) : x(xy), y(xy) {} Vec(float x, float y) : x(x), y(y) {} float& operator[](int i) { return (i == 0) ? x : y; } const float& operator[](int i) const { return (i == 0) ? x : y; } /** Negates the vector. Equivalent to a reflection across the `y = -x` line. */ Vec neg() const { return Vec(-x, -y); } Vec plus(Vec b) const { return Vec(x + b.x, y + b.y); } Vec minus(Vec b) const { return Vec(x - b.x, y - b.y); } Vec mult(float s) const { return Vec(x * s, y * s); } Vec mult(Vec b) const { return Vec(x * b.x, y * b.y); } Vec div(float s) const { return Vec(x / s, y / s); } Vec div(Vec b) const { return Vec(x / b.x, y / b.y); } float dot(Vec b) const { return x * b.x + y * b.y; } float arg() const { return std::atan2(y, x); } float norm() const { return std::hypot(x, y); } Vec normalize() const { return div(norm()); } float square() const { return x * x + y * y; } float area() const { return x * y; } /** Rotates counterclockwise in radians. */ Vec rotate(float angle) { float sin = std::sin(angle); float cos = std::cos(angle); return Vec(x * cos - y * sin, x * sin + y * cos); } /** Swaps the coordinates. Equivalent to a reflection across the `y = x` line. */ Vec flip() const { return Vec(y, x); } Vec min(Vec b) const { return Vec(std::fmin(x, b.x), std::fmin(y, b.y)); } Vec max(Vec b) const { return Vec(std::fmax(x, b.x), std::fmax(y, b.y)); } Vec abs() const { return Vec(std::fabs(x), std::fabs(y)); } Vec round() const { return Vec(std::round(x), std::round(y)); } Vec floor() const { return Vec(std::floor(x), std::floor(y)); } Vec ceil() const { return Vec(std::ceil(x), std::ceil(y)); } bool equals(Vec b) const { return x == b.x && y == b.y; } bool isZero() const { return x == 0.f && y == 0.f; } bool isFinite() const { return std::isfinite(x) && std::isfinite(y); } Vec clamp(Rect bound) const; Vec clampSafe(Rect bound) const; Vec crossfade(Vec b, float p) { return this->plus(b.minus(*this).mult(p)); } // Method aliases bool isEqual(Vec b) const { return equals(b); } }; /** 2-dimensional rectangle for graphics. Mathematically, Rects include points on its left/top edge but *not* its right/bottom edge. The infinite Rect (equal to the entire plane) is defined using pos=-inf and size=inf. */ struct Rect { Vec pos; Vec size; Rect() {} Rect(Vec pos, Vec size) : pos(pos), size(size) {} Rect(float posX, float posY, float sizeX, float sizeY) : pos(Vec(posX, posY)), size(Vec(sizeX, sizeY)) {} /** Constructs a Rect from a top-left and bottom-right vector. */ static Rect fromMinMax(Vec a, Vec b) { return Rect(a, b.minus(a)); } /** Constructs a Rect from any two opposite corners. */ static Rect fromCorners(Vec a, Vec b) { return fromMinMax(a.min(b), a.max(b)); } /** Returns the infinite Rect. */ static Rect inf() { return Rect(Vec(-INFINITY, -INFINITY), Vec(INFINITY, INFINITY)); } /** Returns whether this Rect contains a point, inclusive on the left/top, exclusive on the right/bottom. Correctly handles infinite Rects. */ bool contains(Vec v) const { return (pos.x <= v.x) && (size.x == INFINITY || v.x < pos.x + size.x) && (pos.y <= v.y) && (size.y == INFINITY || v.y < pos.y + size.y); } /** Returns whether this Rect contains (is a superset of) a Rect. Correctly handles infinite Rects. */ bool contains(Rect r) const { return (pos.x <= r.pos.x) && (r.pos.x - size.x <= pos.x - r.size.x) && (pos.y <= r.pos.y) && (r.pos.y - size.y <= pos.y - r.size.y); } /** Returns whether this Rect overlaps with another Rect. Correctly handles infinite Rects. */ bool intersects(Rect r) const { return (r.size.x == INFINITY || pos.x < r.pos.x + r.size.x) && (size.x == INFINITY || r.pos.x < pos.x + size.x) && (r.size.y == INFINITY || pos.y < r.pos.y + r.size.y) && (size.y == INFINITY || r.pos.y < pos.y + size.y); } bool equals(Rect r) const { return pos.equals(r.pos) && size.equals(r.size); } float getLeft() const { return pos.x; } float getRight() const { return (size.x == INFINITY) ? INFINITY : (pos.x + size.x); } float getTop() const { return pos.y; } float getBottom() const { return (size.y == INFINITY) ? INFINITY : (pos.y + size.y); } /** Returns the center point of the rectangle. Returns a NaN coordinate if pos=-inf and size=inf. */ Vec getCenter() const { return pos.plus(size.mult(0.5f)); } Vec getTopLeft() const { return pos; } Vec getTopRight() const { return Vec(getRight(), getTop()); } Vec getBottomLeft() const { return Vec(getLeft(), getBottom()); } Vec getBottomRight() const { return Vec(getRight(), getBottom()); } /** Clamps the edges of the rectangle to fit within a bound. */ Rect clamp(Rect bound) const { Rect r; r.pos.x = math::clampSafe(pos.x, bound.pos.x, bound.pos.x + bound.size.x); r.pos.y = math::clampSafe(pos.y, bound.pos.y, bound.pos.y + bound.size.y); r.size.x = math::clamp(pos.x + size.x, bound.pos.x, bound.pos.x + bound.size.x) - r.pos.x; r.size.y = math::clamp(pos.y + size.y, bound.pos.y, bound.pos.y + bound.size.y) - r.pos.y; return r; } /** Nudges the position to fix inside a bounding box. */ Rect nudge(Rect bound) const { Rect r; r.size = size; r.pos.x = math::clampSafe(pos.x, bound.pos.x, bound.pos.x + bound.size.x - size.x); r.pos.y = math::clampSafe(pos.y, bound.pos.y, bound.pos.y + bound.size.y - size.y); return r; } /** Returns the bounding box of the union of `this` and `b`. */ Rect expand(Rect b) const { Rect r; r.pos.x = std::fmin(pos.x, b.pos.x); r.pos.y = std::fmin(pos.y, b.pos.y); r.size.x = std::fmax(pos.x + size.x, b.pos.x + b.size.x) - r.pos.x; r.size.y = std::fmax(pos.y + size.y, b.pos.y + b.size.y) - r.pos.y; return r; } /** Returns the intersection of `this` and `b`. */ Rect intersect(Rect b) const { Rect r; r.pos.x = std::fmax(pos.x, b.pos.x); r.pos.y = std::fmax(pos.y, b.pos.y); r.size.x = std::fmin(pos.x + size.x, b.pos.x + b.size.x) - r.pos.x; r.size.y = std::fmin(pos.y + size.y, b.pos.y + b.size.y) - r.pos.y; return r; } /** Returns a Rect with its position set to zero. */ Rect zeroPos() const { return Rect(Vec(), size); } /** Expands each corner. */ Rect grow(Vec delta) const { Rect r; r.pos = pos.minus(delta); r.size = size.plus(delta.mult(2.f)); return r; } /** Contracts each corner. */ Rect shrink(Vec delta) const { Rect r; r.pos = pos.plus(delta); r.size = size.minus(delta.mult(2.f)); return r; } // Method aliases bool isContaining(Vec v) const { return contains(v); } bool isIntersecting(Rect r) const { return intersects(r); } bool isEqual(Rect r) const { return equals(r); } }; inline Vec Vec::clamp(Rect bound) const { return Vec( math::clamp(x, bound.pos.x, bound.pos.x + bound.size.x), math::clamp(y, bound.pos.y, bound.pos.y + bound.size.y) ); } inline Vec Vec::clampSafe(Rect bound) const { return Vec( math::clampSafe(x, bound.pos.x, bound.pos.x + bound.size.x), math::clampSafe(y, bound.pos.y, bound.pos.y + bound.size.y) ); } // Operator overloads for Vec inline Vec operator+(const Vec& a) { return a; } inline Vec operator-(const Vec& a) { return a.neg(); } inline Vec operator+(const Vec& a, const Vec& b) { return a.plus(b); } inline Vec operator-(const Vec& a, const Vec& b) { return a.minus(b); } inline Vec operator*(const Vec& a, const Vec& b) { return a.mult(b); } inline Vec operator*(const Vec& a, const float& b) { return a.mult(b); } inline Vec operator*(const float& a, const Vec& b) { return b.mult(a); } inline Vec operator/(const Vec& a, const Vec& b) { return a.div(b); } inline Vec operator/(const Vec& a, const float& b) { return a.div(b); } inline Vec operator+=(Vec& a, const Vec& b) { return a = a.plus(b); } inline Vec operator-=(Vec& a, const Vec& b) { return a = a.minus(b); } inline Vec operator*=(Vec& a, const Vec& b) { return a = a.mult(b); } inline Vec operator*=(Vec& a, const float& b) { return a = a.mult(b); } inline Vec operator/=(Vec& a, const Vec& b) { return a = a.div(b); } inline Vec operator/=(Vec& a, const float& b) { return a = a.div(b); } inline bool operator==(const Vec& a, const Vec& b) { return a.equals(b); } inline bool operator!=(const Vec& a, const Vec& b) { return !a.equals(b); } // Operator overloads for Rect inline bool operator==(const Rect& a, const Rect& b) { return a.equals(b); } inline bool operator!=(const Rect& a, const Rect& b) { return !a.equals(b); } /** Expands a Vec and Rect into a comma-separated list. Useful for print debugging. printf("(%f %f) (%f %f %f %f)", VEC_ARGS(v), RECT_ARGS(r)); Or passing the values to a C function. nvgRect(vg, RECT_ARGS(r)); */ #define VEC_ARGS(v) (v).x, (v).y #define RECT_ARGS(r) (r).pos.x, (r).pos.y, (r).size.x, (r).size.y } // namespace math } // namespace rack