// Copyright 2012 Olivier Gillet. // // Author: Olivier Gillet (ol.gillet@gmail.com) // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. // // See http://creativecommons.org/licenses/MIT/ for more information. // // ----------------------------------------------------------------------------- // // DSP utility routines. #ifndef STMLIB_UTILS_DSP_DSP_H_ #define STMLIB_UTILS_DSP_DSP_H_ #include "stmlib/stmlib.h" #include #include namespace stmlib { #define MAKE_INTEGRAL_FRACTIONAL(x) \ int32_t x ## _integral = static_cast(x); \ float x ## _fractional = x - static_cast(x ## _integral); inline float Interpolate(const float* table, float index, float size) { index *= size; MAKE_INTEGRAL_FRACTIONAL(index) float a = table[index_integral]; float b = table[index_integral + 1]; return a + (b - a) * index_fractional; } inline float InterpolateHermite(const float* table, float index, float size) { index *= size; MAKE_INTEGRAL_FRACTIONAL(index) const float xm1 = table[index_integral - 1]; const float x0 = table[index_integral + 0]; const float x1 = table[index_integral + 1]; const float x2 = table[index_integral + 2]; const float c = (x1 - xm1) * 0.5f; const float v = x0 - x1; const float w = c + v; const float a = w + v + (x2 - x0) * 0.5f; const float b_neg = w + a; const float f = index_fractional; return (((a * f) - b_neg) * f + c) * f + x0; } inline float InterpolateWrap(const float* table, float index, float size) { index -= static_cast(static_cast(index)); index *= size; MAKE_INTEGRAL_FRACTIONAL(index) float a = table[index_integral]; float b = table[index_integral + 1]; return a + (b - a) * index_fractional; } #define ONE_POLE(out, in, coefficient) out += (coefficient) * ((in) - out); #define SLOPE(out, in, positive, negative) { \ float error = (in) - out; \ out += (error > 0 ? positive : negative) * error; \ } #define SLEW(out, in, delta) { \ float error = (in) - out; \ float d = (delta); \ if (error > d) { \ error = d; \ } else if (error < -d) { \ error = -d; \ } \ out += error; \ } inline float Crossfade(float a, float b, float fade) { return a + (b - a) * fade; } inline float SoftLimit(float x) { return x * (27.0f + x * x) / (27.0f + 9.0f * x * x); } inline float SoftClip(float x) { if (x < -3.0f) { return -1.0f; } else if (x > 3.0f) { return 1.0f; } else { return SoftLimit(x); } } #ifdef TEST inline int32_t Clip16(int32_t x) { if (x < -32768) { return -32768; } else if (x > 32767) { return 32767; } else { return x; } } inline uint16_t ClipU16(int32_t x) { if (x < 0) { return 0; } else if (x > 65535) { return 65535; } else { return x; } } #else inline int32_t Clip16(int32_t x) { int32_t result; #ifdef __GNUC__ __asm ("ssat %0, %1, %2" : "=r" (result) : "I" (16), "r" (x) ); #else // (note) msvc 64bit does not support inline assembly if(x > 32767) x = 32767; else if(x < -32768) x = -32768; result = x; #endif return result; } inline uint32_t ClipU16(int32_t x) { uint32_t result; #ifdef __GNUC__ __asm ("usat %0, %1, %2" : "=r" (result) : "I" (16), "r" (x) ); #else // (note) msvc 64bit does not support inline assembly union { int32_t s; uint32_t u; } v; v.s = x; if(v.u > 65535u) v.u = 65535u; result = v.u; #endif return result; } #endif #ifdef TEST inline float Sqrt(float x) { return sqrtf(x); } #else inline float Sqrt(float x) { float result; #ifdef __GNUC__ __asm ("vsqrt.f32 %0, %1" : "=w" (result) : "w" (x) ); #else // (note) msvc 64bit does not support inline assembly result = sqrtf(x); #endif return result; } #endif inline int16_t SoftConvert(float x) { return Clip16(static_cast(SoftLimit(x * 0.5f) * 32768.0f)); } } // namespace stmlib #endif // STMLIB_UTILS_DSP_DSP_H_