// Copyright 2012 Olivier Gillet. // // Author: Olivier Gillet (ol.gillet@gmail.com) // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. // // See http://creativecommons.org/licenses/MIT/ for more information. // // ----------------------------------------------------------------------------- // // A set of basic operands, especially useful for fixed-point arithmetic, with // fast ASM implementations. #ifndef STMLIB_UTILS_DSP_H_ #define STMLIB_UTILS_DSP_H_ #include "stmlib/stmlib.h" #ifdef __GNUC__ #define ALWAYS_INLINE __attribute__((always_inline)) #else #define ALWAYS_INLINE #endif namespace stmlib { inline int16_t Interpolate824(const int16_t* table, uint32_t phase) ALWAYS_INLINE; inline uint16_t Interpolate824(const uint16_t* table, uint32_t phase) ALWAYS_INLINE; inline int16_t Interpolate824(const uint8_t* table, uint32_t phase) ALWAYS_INLINE; inline uint16_t Interpolate88(const uint16_t* table, uint16_t index) ALWAYS_INLINE; inline int16_t Interpolate88(const int16_t* table, uint16_t index) ALWAYS_INLINE; inline int16_t Interpolate1022(const int16_t* table, uint32_t phase) ALWAYS_INLINE; inline int16_t Interpolate115(const int16_t* table, uint32_t phase) ALWAYS_INLINE; inline int16_t Crossfade( const int16_t* table_a, const int16_t* table_b, uint32_t phase, uint16_t balance) ALWAYS_INLINE; inline int16_t Crossfade( const uint8_t* table_a, const uint8_t* table_b, uint32_t phase, uint16_t balance) ALWAYS_INLINE; inline int16_t Crossfade1022( const uint8_t* table_a, const uint8_t* table_b, uint32_t phase, uint16_t balance) ALWAYS_INLINE; inline int16_t Crossfade115( const uint8_t* table_a, const uint8_t* table_b, uint16_t phase, uint16_t balance) ALWAYS_INLINE; inline int16_t Mix(int16_t a, int16_t b, uint16_t balance) { return (a * (65535 - balance) + b * balance) >> 16; } inline uint16_t Mix(uint16_t a, uint16_t b, uint16_t balance) { return (a * (65535 - balance) + b * balance) >> 16; } inline int16_t Interpolate824(const int16_t* table, uint32_t phase) { int32_t a = table[phase >> 24]; int32_t b = table[(phase >> 24) + 1]; return a + ((b - a) * static_cast((phase >> 8) & 0xffff) >> 16); } inline uint16_t Interpolate824(const uint16_t* table, uint32_t phase) { uint32_t a = table[phase >> 24]; uint32_t b = table[(phase >> 24) + 1]; return a + ((b - a) * static_cast((phase >> 8) & 0xffff) >> 16); } inline int16_t Interpolate824(const uint8_t* table, uint32_t phase) { int32_t a = table[phase >> 24]; int32_t b = table[(phase >> 24) + 1]; return (a << 8) + \ ((b - a) * static_cast(phase & 0xffffff) >> 16) - 32768; } inline uint16_t Interpolate88(const uint16_t* table, uint16_t index) { int32_t a = table[index >> 8]; int32_t b = table[(index >> 8) + 1]; return a + ((b - a) * static_cast(index & 0xff) >> 8); } inline int16_t Interpolate88(const int16_t* table, uint16_t index) { int32_t a = table[index >> 8]; int32_t b = table[(index >> 8) + 1]; return a + ((b - a) * static_cast(index & 0xff) >> 8); } inline int16_t Interpolate1022(const int16_t* table, uint32_t phase) { int32_t a = table[phase >> 22]; int32_t b = table[(phase >> 22) + 1]; return a + ((b - a) * static_cast((phase >> 6) & 0xffff) >> 16); } inline int16_t Interpolate115(const int16_t* table, uint16_t phase) { int32_t a = table[phase >> 5]; int32_t b = table[(phase >> 5) + 1]; return a + ((b - a) * static_cast(phase & 0x1f) >> 5); } inline int16_t Crossfade( const int16_t* table_a, const int16_t* table_b, uint32_t phase, uint16_t balance) { int32_t a = Interpolate824(table_a, phase); int32_t b = Interpolate824(table_b, phase); return a + ((b - a) * static_cast(balance) >> 16); } inline int16_t Crossfade( const uint8_t* table_a, const uint8_t* table_b, uint32_t phase, uint16_t balance) { int32_t a = Interpolate824(table_a, phase); int32_t b = Interpolate824(table_b, phase); return a + ((b - a) * static_cast(balance) >> 16); } inline int16_t Crossfade1022( const int16_t* table_a, const int16_t* table_b, uint32_t phase, uint16_t balance) { int32_t a = Interpolate1022(table_a, phase); int32_t b = Interpolate1022(table_b, phase); return a + ((b - a) * static_cast(balance) >> 16); } inline int16_t Crossfade115( const int16_t* table_a, const int16_t* table_b, uint16_t phase, uint16_t balance) { int32_t a = Interpolate115(table_a, phase); int32_t b = Interpolate115(table_b, phase); return a + ((b - a) * static_cast(balance) >> 16); } } // namespace stmlib #endif // STMLIB_UTILS_DSP_H_