// Copyright 2013 Olivier Gillet. // // Author: Olivier Gillet (ol.gillet@gmail.com) // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. // // See http://creativecommons.org/licenses/MIT/ for more information. // // ----------------------------------------------------------------------------- // // Tidal generator. #ifndef TIDES_GENERATOR_H_ #define TIDES_GENERATOR_H_ #include "stmlib/stmlib.h" #include "stmlib/algorithms/pattern_predictor.h" #include "stmlib/utils/ring_buffer.h" // #define WAVETABLE_HACK namespace tides { enum GeneratorRange { GENERATOR_RANGE_HIGH, GENERATOR_RANGE_MEDIUM, GENERATOR_RANGE_LOW }; enum GeneratorMode { GENERATOR_MODE_AD, GENERATOR_MODE_LOOPING, GENERATOR_MODE_AR, }; enum ControlBitMask { CONTROL_FREEZE = 1, CONTROL_GATE = 2, CONTROL_CLOCK = 4, CONTROL_CLOCK_RISING = 8, CONTROL_GATE_RISING = 16, CONTROL_GATE_FALLING = 32 }; enum FlagBitMask { FLAG_END_OF_ATTACK = 1, FLAG_END_OF_RELEASE = 2 }; struct GeneratorSample { uint16_t unipolar; int16_t bipolar; uint8_t flags; }; const size_t kNumBlocks = 2; const size_t kBlockSize = 16; struct FrequencyRatio { uint32_t p; uint32_t q; }; class Generator { public: Generator() { } ~Generator() { } void Init(); void set_range(GeneratorRange range) { ClearFilterState(); range_ = range; clock_divider_ = range_ == GENERATOR_RANGE_LOW ? 4 : 1; } void set_mode(GeneratorMode mode) { mode_ = mode; if (mode_ == GENERATOR_MODE_LOOPING) { running_ = true; } } void set_pitch(int16_t pitch) { if (sync_) { ComputeFrequencyRatio(pitch); } pitch += (12 << 7) - (60 << 7) * static_cast(range_); if (range_ == GENERATOR_RANGE_LOW) { pitch -= (12 << 7); // One extra octave of super LF stuff! } pitch_ = pitch; } void set_shape(int16_t shape) { shape_ = shape; } void set_slope(int16_t slope) { slope_ = slope; } void set_smoothness(int16_t smoothness) { smoothness_ = smoothness; } void set_frequency_ratio(FrequencyRatio ratio) { frequency_ratio_ = ratio; } void set_sync(bool sync) { if (!sync_ && sync) { pattern_predictor_.Init(); } sync_ = sync; sync_edges_counter_ = 0; } inline GeneratorMode mode() const { return mode_; } inline GeneratorRange range() const { return range_; } inline bool sync() const { return sync_; } inline const GeneratorSample& Process(uint8_t control) { input_samples_[playback_block_][current_sample_] = control; const GeneratorSample& out = output_samples_[playback_block_][current_sample_]; current_sample_ = current_sample_ + 1; if (current_sample_ >= kBlockSize) { current_sample_ = 0; playback_block_ = (playback_block_ + 1) % kNumBlocks; } return out; } inline bool writable_block() const { return render_block_ != playback_block_; } inline void Process(bool wavetableHack = false) { while (render_block_ != playback_block_) { uint8_t* in = input_samples_[render_block_]; GeneratorSample* out = output_samples_[render_block_]; if (!wavetableHack) { if (range_ == GENERATOR_RANGE_HIGH) { ProcessAudioRate(in, out, kBlockSize); } else { ProcessControlRate(in, out, kBlockSize); } ProcessFilterWavefolder(out, kBlockSize); } else { ProcessWavetable(in, out, kBlockSize); } render_block_ = (render_block_ + 1) % kNumBlocks; } } uint32_t clock_divider() const { return clock_divider_; } private: // There are two versions of the rendering code, one optimized for audio, with // band-limiting. void ProcessAudioRate(const uint8_t* in, GeneratorSample* out, size_t size); void ProcessControlRate(const uint8_t* in, GeneratorSample* out, size_t size); void ProcessWavetable(const uint8_t* in, GeneratorSample* out, size_t size); void ProcessFilterWavefolder(GeneratorSample* in_out, size_t size); int32_t ComputeAntialiasAttenuation( int16_t pitch, int16_t slope, int16_t shape, int16_t smoothness) const; inline void ClearFilterState() { uni_lp_state_[0] = uni_lp_state_[1] = 0; bi_lp_state_[0] = bi_lp_state_[1] = 0; } uint32_t ComputePhaseIncrement(int16_t pitch); int16_t ComputePitch(uint32_t phase_increment); int32_t ComputeCutoffFrequency(int16_t pitch, int16_t smoothness); void ComputeFrequencyRatio(int16_t pitch); inline int32_t NextIntegratedBlepSample(uint32_t t) const { if (t >= 65535) { t = 65535; } const int32_t t1 = t >> 1; const int32_t t2 = t1 * t1 >> 16; const int32_t t4 = t2 * t2 >> 16; return 12288 - t1 + (3 * t2 >> 1) - t4; } inline int32_t ThisIntegratedBlepSample(uint32_t t) const { if (t >= 65535) { t = 65535; } t = 65535 - t; const int32_t t1 = t >> 1; const int32_t t2 = t1 * t1 >> 16; const int32_t t4 = t2 * t2 >> 16; return 12288 - t1 + (3 * t2 >> 1) - t4; } GeneratorSample output_samples_[kNumBlocks][kBlockSize]; uint8_t input_samples_[kNumBlocks][kBlockSize]; size_t current_sample_; volatile size_t playback_block_; volatile size_t render_block_; GeneratorMode mode_; GeneratorRange range_; GeneratorSample previous_sample_; GeneratorSample buffer_[kBlockSize]; uint32_t clock_divider_; uint16_t prescaler_; int16_t pitch_; int16_t previous_pitch_; int16_t shape_; int16_t slope_; int32_t smoothed_slope_; int16_t smoothness_; int16_t attenuation_; uint32_t phase_; uint32_t phase_increment_; uint16_t x_; uint16_t y_; uint16_t z_; bool wrap_; bool sync_; FrequencyRatio frequency_ratio_; // Time measurement and clock divider for PLL mode. uint32_t sync_counter_; uint32_t sync_edges_counter_; uint32_t local_osc_phase_; uint32_t local_osc_phase_increment_; uint32_t target_phase_increment_; uint32_t eor_counter_; stmlib::PatternPredictor<32, 8> pattern_predictor_; int64_t uni_lp_state_[2]; int64_t bi_lp_state_[2]; bool running_; // Polyblep status. int32_t next_sample_; bool slope_up_; uint32_t mid_point_; static const FrequencyRatio frequency_ratios_[]; static const int16_t num_frequency_ratios_; DISALLOW_COPY_AND_ASSIGN(Generator); }; } // namespace tides #endif // TIDES_GENERATOR_H_