#pragma once #include #include namespace rack { namespace dsp { /** Real-valued FFT context. Wrapper for [PFFFT](https://bitbucket.org/jpommier/pffft/) `length` must be a multiple of 32. Buffers must be aligned to 16-byte boundaries. new[] and malloc() do this for you. */ struct RealFFT { PFFFT_Setup* setup; int length; RealFFT(size_t length) { this->length = length; setup = pffft_new_setup(length, PFFFT_REAL); } ~RealFFT() { pffft_destroy_setup(setup); } /** Performs the real FFT. Input and output must be aligned using the above align*() functions. Input and output arrays may overlap. Input is `length` elements. Output is `2*length` elements. Output is arbitrarily ordered for performance reasons. However, this ordering is consistent, so element-wise multiplication with line up with other results, and the inverse FFT will return a correctly ordered result. */ void rfftUnordered(const float* input, float* output) { pffft_transform(setup, input, output, NULL, PFFFT_FORWARD); } /** Performs the inverse real FFT. Input is `2*length` elements. Output is `length` elements. Scaling is such that IRFFT(RFFT(x)) = N*x. */ void irfftUnordered(const float* input, float* output) { pffft_transform(setup, input, output, NULL, PFFFT_BACKWARD); } /** Slower than the above methods, but returns results in the "canonical" FFT order as follows. output[0] = F(0) output[1] = F(n/2) output[2] = real(F(1)) output[3] = imag(F(1)) output[4] = real(F(2)) output[5] = imag(F(2)) ... output[length - 2] = real(F(n/2 - 1)) output[length - 1] = imag(F(n/2 - 1)) */ void rfft(const float* input, float* output) { pffft_transform_ordered(setup, input, output, NULL, PFFFT_FORWARD); } void irfft(const float* input, float* output) { pffft_transform_ordered(setup, input, output, NULL, PFFFT_BACKWARD); } /** Scales the RFFT so that `scale(IFFT(FFT(x))) = x`. */ void scale(float* x) { float a = 1.f / length; for (int i = 0; i < length; i++) { x[i] *= a; } } }; /** Complex-valued FFT context. `length` must be a multiple of 16. */ struct ComplexFFT { PFFFT_Setup* setup; int length; ComplexFFT(size_t length) { this->length = length; setup = pffft_new_setup(length, PFFFT_COMPLEX); } ~ComplexFFT() { pffft_destroy_setup(setup); } /** Performs the complex FFT. Input and output must be aligned using the above align*() functions. Input is `2*length` elements. Output is `2*length` elements. */ void fftUnordered(const float* input, float* output) { pffft_transform(setup, input, output, NULL, PFFFT_FORWARD); } /** Performs the inverse complex FFT. Input is `2*length` elements. Output is `2*length` elements. Scaling is such that FFT(IFFT(x)) = N*x. */ void ifftUnordered(const float* input, float* output) { pffft_transform(setup, input, output, NULL, PFFFT_BACKWARD); } void fft(const float* input, float* output) { pffft_transform_ordered(setup, input, output, NULL, PFFFT_FORWARD); } void ifft(const float* input, float* output) { pffft_transform_ordered(setup, input, output, NULL, PFFFT_BACKWARD); } void scale(float* x) { float a = 1.f / length; for (int i = 0; i < length; i++) { x[2 * i + 0] *= a; x[2 * i + 1] *= a; } } }; } // namespace dsp } // namespace rack