#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace rack { namespace app { static ModuleWidget* moduleFromJson(json_t* moduleJ) { // Get slugs json_t* pluginSlugJ = json_object_get(moduleJ, "plugin"); if (!pluginSlugJ) return NULL; json_t* modelSlugJ = json_object_get(moduleJ, "model"); if (!modelSlugJ) return NULL; std::string pluginSlug = json_string_value(pluginSlugJ); std::string modelSlug = json_string_value(modelSlugJ); // Get Model plugin::Model* model = plugin::getModel(pluginSlug, modelSlug); if (!model) return NULL; // Create ModuleWidget ModuleWidget* moduleWidget = model->createModuleWidget(); assert(moduleWidget); moduleWidget->fromJson(moduleJ); return moduleWidget; } struct ModuleContainer : widget::Widget { void draw(const DrawArgs& args) override { // Draw shadows behind each ModuleWidget first, so the shadow doesn't overlap the front of other ModuleWidgets. for (widget::Widget* child : children) { ModuleWidget* w = dynamic_cast(child); assert(w); nvgSave(args.vg); nvgTranslate(args.vg, child->box.pos.x, child->box.pos.y); w->drawShadow(args); nvgRestore(args.vg); } Widget::draw(args); } }; struct CableContainer : widget::TransparentWidget { void draw(const DrawArgs& args) override { // Draw cable plugs for (widget::Widget* w : children) { CableWidget* cw = dynamic_cast(w); assert(cw); cw->drawPlugs(args); } Widget::draw(args); } }; RackWidget::RackWidget() { railFb = new widget::FramebufferWidget; railFb->box.size = math::Vec(); railFb->oversample = 1.0; { RackRail* rail = new RackRail; rail->box.size = math::Vec(); railFb->addChild(rail); } addChild(railFb); moduleContainer = new ModuleContainer; addChild(moduleContainer); cableContainer = new CableContainer; addChild(cableContainer); } RackWidget::~RackWidget() { clear(); } void RackWidget::step() { Widget::step(); } void RackWidget::draw(const DrawArgs& args) { // Resize and reposition the RackRail to align on the grid. math::Rect railBox; railBox.pos = args.clipBox.pos.div(BUS_BOARD_GRID_SIZE).floor().mult(BUS_BOARD_GRID_SIZE); railBox.size = args.clipBox.size.div(BUS_BOARD_GRID_SIZE).ceil().plus(math::Vec(1, 1)).mult(BUS_BOARD_GRID_SIZE); if (!railFb->box.size.isEqual(railBox.size)) { railFb->dirty = true; } railFb->box = railBox; RackRail* rail = railFb->getFirstDescendantOfType(); rail->box.size = railFb->box.size; Widget::draw(args); } void RackWidget::onHover(const event::Hover& e) { // Set before calling children's onHover() mousePos = e.pos; OpaqueWidget::onHover(e); } void RackWidget::onHoverKey(const event::HoverKey& e) { OpaqueWidget::onHoverKey(e); if (e.isConsumed()) return; if (e.action == GLFW_PRESS || e.action == GLFW_REPEAT) { switch (e.key) { case GLFW_KEY_V: { if ((e.mods & RACK_MOD_MASK) == RACK_MOD_CTRL) { pastePresetClipboardAction(); e.consume(this); } } break; } } } void RackWidget::onDragHover(const event::DragHover& e) { // Set before calling children's onDragHover() mousePos = e.pos; OpaqueWidget::onDragHover(e); } void RackWidget::onButton(const event::Button& e) { Widget::onButton(e); e.stopPropagating(); if (e.isConsumed()) return; if (e.action == GLFW_PRESS && e.button == GLFW_MOUSE_BUTTON_RIGHT) { APP->scene->moduleBrowser->show(); e.consume(this); } } void RackWidget::clear() { // This isn't required because removing all ModuleWidgets should remove all cables, but do it just in case. clearCables(); // Remove ModuleWidgets std::list widgets = moduleContainer->children; for (widget::Widget* w : widgets) { ModuleWidget* moduleWidget = dynamic_cast(w); assert(moduleWidget); removeModule(moduleWidget); delete moduleWidget; } } json_t* RackWidget::toJson() { // root json_t* rootJ = json_object(); // Get module offset so modules are aligned to (0, 0) when the patch is loaded. math::Vec moduleOffset = math::Vec(INFINITY, INFINITY); for (widget::Widget* w : moduleContainer->children) { moduleOffset = moduleOffset.min(w->box.pos); } if (moduleContainer->children.empty()) { moduleOffset = RACK_OFFSET; } // modules json_t* modulesJ = json_array(); for (widget::Widget* w : moduleContainer->children) { ModuleWidget* moduleWidget = dynamic_cast(w); assert(moduleWidget); // module json_t* moduleJ = moduleWidget->toJson(); { // pos math::Vec pos = moduleWidget->box.pos.minus(moduleOffset); pos = pos.div(RACK_GRID_SIZE).round(); json_t* posJ = json_pack("[i, i]", (int) pos.x, (int) pos.y); json_object_set_new(moduleJ, "pos", posJ); } json_array_append_new(modulesJ, moduleJ); } json_object_set_new(rootJ, "modules", modulesJ); // cables json_t* cablesJ = json_array(); for (widget::Widget* w : cableContainer->children) { CableWidget* cw = dynamic_cast(w); assert(cw); // Only serialize complete cables if (!cw->isComplete()) continue; json_t* cableJ = cw->toJson(); json_array_append_new(cablesJ, cableJ); } json_object_set_new(rootJ, "cables", cablesJ); return rootJ; } void RackWidget::fromJson(json_t* rootJ) { // modules json_t* modulesJ = json_object_get(rootJ, "modules"); if (!modulesJ) return; size_t moduleIndex; json_t* moduleJ; json_array_foreach(modulesJ, moduleIndex, moduleJ) { ModuleWidget* moduleWidget = moduleFromJson(moduleJ); if (moduleWidget) { // Before 1.0, the module ID was the index in the "modules" array if (APP->patch->isLegacy(2)) { moduleWidget->module->id = moduleIndex; } // pos json_t* posJ = json_object_get(moduleJ, "pos"); double x, y; json_unpack(posJ, "[F, F]", &x, &y); math::Vec pos = math::Vec(x, y); if (APP->patch->isLegacy(1)) { // Before 0.6, positions were in pixel units moduleWidget->box.pos = pos; } else { moduleWidget->box.pos = pos.mult(RACK_GRID_SIZE); } moduleWidget->box.pos = moduleWidget->box.pos.plus(RACK_OFFSET); addModule(moduleWidget); } else { json_t* pluginSlugJ = json_object_get(moduleJ, "plugin"); json_t* modelSlugJ = json_object_get(moduleJ, "model"); std::string pluginSlug = json_string_value(pluginSlugJ); std::string modelSlug = json_string_value(modelSlugJ); APP->patch->warningLog += string::f("Could not find module \"%s\" of plugin \"%s\"\n", modelSlug.c_str(), pluginSlug.c_str()); } } // cables json_t* cablesJ = json_object_get(rootJ, "cables"); // Before 1.0, cables were called wires if (!cablesJ) cablesJ = json_object_get(rootJ, "wires"); assert(cablesJ); size_t cableIndex; json_t* cableJ; json_array_foreach(cablesJ, cableIndex, cableJ) { // Create a unserialize cable CableWidget* cw = new CableWidget; cw->fromJson(cableJ); if (!cw->isComplete()) { delete cw; continue; } addCable(cw); } } void RackWidget::pastePresetClipboardAction() { const char* moduleJson = glfwGetClipboardString(APP->window->win); if (!moduleJson) { WARN("Could not get text from clipboard."); return; } json_error_t error; json_t* moduleJ = json_loads(moduleJson, 0, &error); if (moduleJ) { ModuleWidget* mw = moduleFromJson(moduleJ); json_decref(moduleJ); // Reset ID so the Engine automatically assigns a new one mw->module->id = -1; addModuleAtMouse(mw); // history::ModuleAdd history::ModuleAdd* h = new history::ModuleAdd; h->setModule(mw); APP->history->push(h); } else { WARN("JSON parsing error at %s %d:%d %s", error.source, error.line, error.column, error.text); } } static void RackWidget_updateAdjacent(RackWidget* that) { for (widget::Widget* w : that->moduleContainer->children) { math::Vec pLeft = w->box.pos.div(RACK_GRID_SIZE).round(); math::Vec pRight = w->box.getTopRight().div(RACK_GRID_SIZE).round(); ModuleWidget* mwLeft = NULL; ModuleWidget* mwRight = NULL; // Find adjacent modules for (widget::Widget* w2 : that->moduleContainer->children) { if (w2 == w) continue; math::Vec p2Left = w2->box.pos.div(RACK_GRID_SIZE).round(); math::Vec p2Right = w2->box.getTopRight().div(RACK_GRID_SIZE).round(); // Check if this is a left module if (p2Right.isEqual(pLeft)) { mwLeft = dynamic_cast(w2); } // Check if this is a right module if (p2Left.isEqual(pRight)) { mwRight = dynamic_cast(w2); } } ModuleWidget* mw = dynamic_cast(w); mw->module->leftExpander.moduleId = mwLeft ? mwLeft->module->id : -1; mw->module->rightExpander.moduleId = mwRight ? mwRight->module->id : -1; } } void RackWidget::addModule(ModuleWidget* m) { // Add module to ModuleContainer assert(m); // Module must be 3U high and at least 1HP wide assert(m->box.size.x >= RACK_GRID_WIDTH); assert(m->box.size.y == RACK_GRID_HEIGHT); moduleContainer->addChild(m); if (m->module) { // Add module to Engine APP->engine->addModule(m->module); } RackWidget_updateAdjacent(this); } void RackWidget::addModuleAtMouse(ModuleWidget* mw) { assert(mw); // Move module nearest to the mouse position math::Vec pos = mousePos.minus(mw->box.size.div(2)); setModulePosNearest(mw, pos); addModule(mw); } void RackWidget::removeModule(ModuleWidget* m) { // Unset touchedParamWidget if (touchedParam) { ModuleWidget* touchedModule = touchedParam->getAncestorOfType(); if (touchedModule == m) touchedParam = NULL; } // Disconnect cables m->disconnect(); if (m->module) { // Remove module from Engine APP->engine->removeModule(m->module); } // Remove module from ModuleContainer moduleContainer->removeChild(m); } bool RackWidget::requestModulePos(ModuleWidget* mw, math::Vec pos) { // Check intersection with other modules math::Rect mwBox = math::Rect(pos, mw->box.size); for (widget::Widget* w2 : moduleContainer->children) { // Don't intersect with self if (mw == w2) continue; // Don't intersect with invisible modules if (!w2->visible) continue; // Check intersection if (mwBox.isIntersecting(w2->box)) { return false; } } // Accept requested position mw->box = mwBox; RackWidget_updateAdjacent(this); return true; } void RackWidget::setModulePosNearest(ModuleWidget* mw, math::Vec pos) { // Dijkstra's algorithm to generate a sorted list of Vecs closest to `pos`. // Comparison of distance of Vecs to `pos` auto cmpNearest = [&](const math::Vec & a, const math::Vec & b) { return a.minus(pos).square() > b.minus(pos).square(); }; // Comparison of dictionary order of Vecs auto cmp = [&](const math::Vec & a, const math::Vec & b) { if (a.x != b.x) return a.x < b.x; return a.y < b.y; }; // Priority queue sorted by distance from `pos` std::priority_queue, decltype(cmpNearest)> queue(cmpNearest); // Set of already-tested Vecs std::set visited(cmp); // Seed priority queue with closest Vec math::Vec closestPos = pos.div(RACK_GRID_SIZE).round().mult(RACK_GRID_SIZE); queue.push(closestPos); while (!queue.empty()) { math::Vec testPos = queue.top(); // Check testPos if (requestModulePos(mw, testPos)) return; // Move testPos to visited set queue.pop(); visited.insert(testPos); // Add adjacent Vecs static const std::vector deltas = { math::Vec(-1, 0).mult(RACK_GRID_SIZE), math::Vec(1, 0).mult(RACK_GRID_SIZE), math::Vec(0, -1).mult(RACK_GRID_SIZE), math::Vec(0, 1).mult(RACK_GRID_SIZE), }; for (math::Vec delta : deltas) { math::Vec newPos = testPos.plus(delta); if (visited.find(newPos) == visited.end()) { queue.push(newPos); } } } // We failed to find a box. This shouldn't happen on an infinite rack. assert(0); } void RackWidget::setModulePosForce(ModuleWidget* mw, math::Vec pos) { mw->box.pos = pos.div(RACK_GRID_SIZE).round().mult(RACK_GRID_SIZE); // Comparison of center X coordinates auto cmp = [&](const widget::Widget * a, const widget::Widget * b) { return a->box.pos.x + a->box.size.x / 2 < b->box.pos.x + b->box.size.x / 2; }; // Collect modules to the left and right of `mw` std::set leftModules(cmp); std::set rightModules(cmp); for (widget::Widget* w2 : moduleContainer->children) { if (w2 == mw) continue; // Modules must be on the same row as `mw` if (w2->box.pos.y != mw->box.pos.y) continue; if (cmp(w2, mw)) leftModules.insert(w2); else rightModules.insert(w2); } // Shove left modules float xLimit = mw->box.pos.x; for (auto it = leftModules.rbegin(); it != leftModules.rend(); it++) { widget::Widget* w = *it; float x = xLimit - w->box.size.x; x = std::round(x / RACK_GRID_WIDTH) * RACK_GRID_WIDTH; if (w->box.pos.x < x) break; w->box.pos.x = x; xLimit = x; } // Shove right modules xLimit = mw->box.pos.x + mw->box.size.x; for (auto it = rightModules.begin(); it != rightModules.end(); it++) { widget::Widget* w = *it; float x = xLimit; x = std::round(x / RACK_GRID_WIDTH) * RACK_GRID_WIDTH; if (w->box.pos.x > x) break; w->box.pos.x = x; xLimit = x + w->box.size.x; } RackWidget_updateAdjacent(this); } ModuleWidget* RackWidget::getModule(int moduleId) { for (widget::Widget* w : moduleContainer->children) { ModuleWidget* mw = dynamic_cast(w); assert(mw); if (mw->module->id == moduleId) return mw; } return NULL; } bool RackWidget::isEmpty() { return moduleContainer->children.empty(); } void RackWidget::updateModuleDragPositions() { moduleDragPositions.clear(); for (widget::Widget* w : moduleContainer->children) { ModuleWidget* mw = dynamic_cast(w); assert(mw); moduleDragPositions[mw->module->id] = mw->box.pos; } } history::ComplexAction* RackWidget::getModuleDragAction() { history::ComplexAction* h = new history::ComplexAction; for (widget::Widget* w : moduleContainer->children) { ModuleWidget* mw = dynamic_cast(w); assert(mw); // It is possible to add modules to the rack while dragging, so ignore modules that don't exist. auto it = moduleDragPositions.find(mw->module->id); if (it == moduleDragPositions.end()) continue; // Create ModuleMove action if the module was moved. math::Vec pos = it->second; if (!pos.isEqual(mw->box.pos)) { history::ModuleMove* mmh = new history::ModuleMove; mmh->moduleId = mw->module->id; mmh->oldPos = pos; mmh->newPos = mw->box.pos; h->push(mmh); } } return h; } void RackWidget::clearCables() { for (widget::Widget* w : cableContainer->children) { CableWidget* cw = dynamic_cast(w); assert(cw); if (!cw->isComplete()) continue; APP->engine->removeCable(cw->cable); } incompleteCable = NULL; cableContainer->clearChildren(); } void RackWidget::clearCablesAction() { // Add CableRemove for every cable to a ComplexAction history::ComplexAction* complexAction = new history::ComplexAction; complexAction->name = "clear cables"; for (widget::Widget* w : cableContainer->children) { CableWidget* cw = dynamic_cast(w); assert(cw); if (!cw->isComplete()) continue; // history::CableRemove history::CableRemove* h = new history::CableRemove; h->setCable(cw); complexAction->push(h); } APP->history->push(complexAction); clearCables(); } void RackWidget::clearCablesOnPort(PortWidget* port) { for (CableWidget* cw : getCablesOnPort(port)) { // Check if cable is connected to port if (cw == incompleteCable) { incompleteCable = NULL; cableContainer->removeChild(cw); } else { removeCable(cw); } delete cw; } } void RackWidget::addCable(CableWidget* w) { assert(w->isComplete()); APP->engine->addCable(w->cable); cableContainer->addChild(w); } void RackWidget::removeCable(CableWidget* w) { assert(w->isComplete()); APP->engine->removeCable(w->cable); cableContainer->removeChild(w); } void RackWidget::setIncompleteCable(CableWidget* w) { if (incompleteCable) { cableContainer->removeChild(incompleteCable); delete incompleteCable; incompleteCable = NULL; } if (w) { cableContainer->addChild(w); incompleteCable = w; } } CableWidget* RackWidget::releaseIncompleteCable() { if (!incompleteCable) return NULL; CableWidget* cw = incompleteCable; cableContainer->removeChild(incompleteCable); incompleteCable = NULL; return cw; } CableWidget* RackWidget::getTopCable(PortWidget* port) { for (auto it = cableContainer->children.rbegin(); it != cableContainer->children.rend(); it++) { CableWidget* cw = dynamic_cast(*it); assert(cw); // Ignore incomplete cables if (!cw->isComplete()) continue; if (cw->inputPort == port || cw->outputPort == port) return cw; } return NULL; } CableWidget* RackWidget::getCable(int cableId) { for (widget::Widget* w : cableContainer->children) { CableWidget* cw = dynamic_cast(w); assert(cw); if (cw->cable->id == cableId) return cw; } return NULL; } std::list RackWidget::getCablesOnPort(PortWidget* port) { assert(port); std::list cables; for (widget::Widget* w : cableContainer->children) { CableWidget* cw = dynamic_cast(w); assert(cw); if (cw->inputPort == port || cw->outputPort == port) { cables.push_back(cw); } } return cables; } } // namespace app } // namespace rack