#pragma once #include namespace rack { namespace dsp { /** The callback function `f` in each of these stepping functions must have the signature void f(T t, const T x[], T dxdt[]) A capturing lambda is ideal for this. For example, the following solves the system x''(t) = -x(t) using a fixed timestep of 0.01 and initial conditions x(0) = 1, x'(0) = 0. float x[2] = {1.f, 0.f}; float dt = 0.01f; for (float t = 0.f; t < 1.f; t += dt) { rack::ode::stepRK4(t, dt, x, 2, [&](float t, const float x[], float dxdt[]) { dxdt[0] = x[1]; dxdt[1] = -x[0]; }); printf("%f\n", x[0]); } */ /** Solves an ODE system using the 1st order Euler method */ template void stepEuler(T t, T dt, T x[], int len, F f) { T k[len]; f(t, x, k); for (int i = 0; i < len; i++) { x[i] += dt * k[i]; } } /** Solves an ODE system using the 2nd order Runge-Kutta method */ template void stepRK2(T t, T dt, T x[], int len, F f) { T k1[len]; T k2[len]; T yi[len]; f(t, x, k1); for (int i = 0; i < len; i++) { yi[i] = x[i] + k1[i] * dt / T(2); } f(t + dt / T(2), yi, k2); for (int i = 0; i < len; i++) { x[i] += dt * k2[i]; } } /** Solves an ODE system using the 4th order Runge-Kutta method */ template void stepRK4(T t, T dt, T x[], int len, F f) { T k1[len]; T k2[len]; T k3[len]; T k4[len]; T yi[len]; f(t, x, k1); for (int i = 0; i < len; i++) { yi[i] = x[i] + k1[i] * dt / T(2); } f(t + dt / T(2), yi, k2); for (int i = 0; i < len; i++) { yi[i] = x[i] + k2[i] * dt / T(2); } f(t + dt / T(2), yi, k3); for (int i = 0; i < len; i++) { yi[i] = x[i] + k3[i] * dt; } f(t + dt, yi, k4); for (int i = 0; i < len; i++) { x[i] += dt * (k1[i] + T(2) * k2[i] + T(2) * k3[i] + k4[i]) / T(6); } } } // namespace dsp } // namespace rack