@@ -6,11 +6,12 @@ namespace rack { | |||||
namespace dsp { | namespace dsp { | ||||
// Useful constants | |||||
// Constants | |||||
static const float FREQ_C4 = 261.6256f; | static const float FREQ_C4 = 261.6256f; | ||||
static const float FREQ_A4 = 440.0000f; | static const float FREQ_A4 = 440.0000f; | ||||
// Mathematical functions | |||||
/** The normalized sinc function | /** The normalized sinc function | ||||
See https://en.wikipedia.org/wiki/Sinc_function | See https://en.wikipedia.org/wiki/Sinc_function | ||||
@@ -22,6 +23,84 @@ inline float sinc(float x) { | |||||
return std::sin(x) / x; | return std::sin(x) / x; | ||||
} | } | ||||
// Window functions | |||||
/** Hann window function | |||||
p: proportion from [0, 1], usually `i / (len - 1)` | |||||
https://en.wikipedia.org/wiki/Window_function#Hann_and_Hamming_windows | |||||
*/ | |||||
inline float hann(float p) { | |||||
return 0.5f * (1.f - std::cos(2*M_PI * p)); | |||||
} | |||||
inline void hannWindow(float *x, int len) { | |||||
for (int i = 0; i < len; i++) { | |||||
x[i] *= hann((float) i / (len - 1)); | |||||
} | |||||
} | |||||
/** Blackman window function | |||||
https://en.wikipedia.org/wiki/Window_function#Blackman_window | |||||
A typical alpha value is 0.16. | |||||
*/ | |||||
inline float blackman(float alpha, float p) { | |||||
return | |||||
+ (1 - alpha) / 2.f | |||||
- 1 / 2.f * std::cos(2*M_PI * p) | |||||
+ alpha / 2.f * std::cos(4*M_PI * p); | |||||
} | |||||
inline void blackmanWindow(float alpha, float *x, int len) { | |||||
for (int i = 0; i < len; i++) { | |||||
x[i] *= blackman(alpha, (float) i / (len - 1)); | |||||
} | |||||
} | |||||
/** Blackman-Nuttall window function | |||||
https://en.wikipedia.org/wiki/Window_function#Blackman%E2%80%93Nuttall_window | |||||
*/ | |||||
inline float blackmanNuttall(float p) { | |||||
return | |||||
+ 0.3635819f | |||||
- 0.4891775f * std::cos(2*M_PI * p) | |||||
+ 0.1365995f * std::cos(4*M_PI * p) | |||||
- 0.0106411f * std::cos(6*M_PI * p); | |||||
} | |||||
inline void blackmanNuttallWindow(float *x, int len) { | |||||
for (int i = 0; i < len; i++) { | |||||
x[i] *= blackmanNuttall((float) i / (len - 1)); | |||||
} | |||||
} | |||||
/** Blackman-Harris window function | |||||
https://en.wikipedia.org/wiki/Window_function#Blackman%E2%80%93Harris_window | |||||
*/ | |||||
inline float blackmanHarris(float p) { | |||||
return | |||||
+ 0.35875f | |||||
- 0.48829f * std::cos(2*M_PI * p) | |||||
+ 0.14128f * std::cos(4*M_PI * p) | |||||
- 0.01168f * std::cos(6*M_PI * p); | |||||
} | |||||
inline void blackmanHarrisWindow(float *x, int len) { | |||||
for (int i = 0; i < len; i++) { | |||||
x[i] *= blackmanHarris((float) i / (len - 1)); | |||||
} | |||||
} | |||||
// Conversion functions | |||||
inline float amplitudeToDb(float amp) { | |||||
return std::log10(amp) * 20.f; | |||||
} | |||||
inline float dbToAmplitude(float db) { | |||||
return std::pow(10.f, db / 20.f); | |||||
} | |||||
// Functions for parameter scaling | // Functions for parameter scaling | ||||
inline float quadraticBipolar(float x) { | inline float quadraticBipolar(float x) { | ||||
@@ -53,16 +132,6 @@ inline float exponentialBipolar(float b, float x) { | |||||
return (std::pow(b, x) - std::pow(b, -x)) / a; | return (std::pow(b, x) - std::pow(b, -x)) / a; | ||||
} | } | ||||
// Useful conversion functions | |||||
inline float amplitudeToDb(float amp) { | |||||
return std::log10(amp) * 20.f; | |||||
} | |||||
inline float dbToAmplitude(float db) { | |||||
return std::pow(10.f, db / 20.f); | |||||
} | |||||
} // namespace dsp | } // namespace dsp | ||||
} // namespace rack | } // namespace rack |
@@ -9,7 +9,7 @@ namespace dsp { | |||||
template<typename T> | template<typename T> | ||||
T *alignedNew(size_t len) { | T *alignedNew(size_t len) { | ||||
return pffft_aligned_malloc(len * sizeof(T)); | |||||
return (T*) pffft_aligned_malloc(len * sizeof(T)); | |||||
} | } | ||||
template<typename T> | template<typename T> | ||||
@@ -24,22 +24,6 @@ inline void boxcarLowpassIR(float *out, int len, float cutoff = 0.5f) { | |||||
} | } | ||||
} | } | ||||
inline void blackmanHarris(float *x, int len) { | |||||
// Constants from https://en.wikipedia.org/wiki/Window_function#Blackman%E2%80%93Harris_window | |||||
const float a0 = 0.35875f; | |||||
const float a1 = 0.48829f; | |||||
const float a2 = 0.14128f; | |||||
const float a3 = 0.01168f; | |||||
float factor = 2*M_PI / (len - 1); | |||||
for (int i = 0; i < len; i++) { | |||||
x[i] *= | |||||
+ a0 | |||||
- a1 * std::cos(1*factor * i) | |||||
+ a2 * std::cos(2*factor * i) | |||||
- a3 * std::cos(3*factor * i); | |||||
} | |||||
} | |||||
struct RealTimeConvolver { | struct RealTimeConvolver { | ||||
// `kernelBlocks` number of contiguous FFT blocks of size `blockSize` | // `kernelBlocks` number of contiguous FFT blocks of size `blockSize` | ||||
@@ -6,28 +6,41 @@ namespace rack { | |||||
namespace dsp { | namespace dsp { | ||||
template<int ZERO_CROSSINGS> | |||||
struct MinBLEP { | |||||
float buf[2 * ZERO_CROSSINGS] = {}; | |||||
/** Computes the minimum-phase bandlimited step (MinBLEP) | |||||
z: number of zero-crossings | |||||
o: oversample factor | |||||
output: must be length `2 * z * o`. | |||||
https://www.cs.cmu.edu/~eli/papers/icmc01-hardsync.pdf | |||||
*/ | |||||
void minBlepImpulse(int z, int o, float *output); | |||||
template<int Z, int O> | |||||
struct MinBlepGenerator { | |||||
float buf[2 * Z] = {}; | |||||
int pos = 0; | int pos = 0; | ||||
const float *minblep; | |||||
int oversample; | |||||
float impulse[2 * Z * O + 1]; | |||||
MinBlepGenerator() { | |||||
minBlepImpulse(Z, O, impulse); | |||||
impulse[2 * Z * O] = 1.f; | |||||
} | |||||
/** Places a discontinuity with magnitude `x` at -1 < p <= 0 relative to the current frame */ | /** Places a discontinuity with magnitude `x` at -1 < p <= 0 relative to the current frame */ | ||||
void insertDiscontinuity(float p, float x) { | void insertDiscontinuity(float p, float x) { | ||||
if (!(-1 < p && p <= 0)) | if (!(-1 < p && p <= 0)) | ||||
return; | return; | ||||
for (int j = 0; j < 2 * ZERO_CROSSINGS; j++) { | |||||
float minblepIndex = ((float)j - p) * oversample; | |||||
int index = (pos + j) % (2 * ZERO_CROSSINGS); | |||||
buf[index] += x * (-1.f + math::interpolateLinear(minblep, minblepIndex)); | |||||
for (int j = 0; j < 2 * Z; j++) { | |||||
float minBlepIndex = ((float)j - p) * O; | |||||
int index = (pos + j) % (2 * Z); | |||||
buf[index] += x * (-1.f + math::interpolateLinear(impulse, minBlepIndex)); | |||||
} | } | ||||
} | } | ||||
float process() { | float process() { | ||||
float v = buf[pos]; | float v = buf[pos]; | ||||
buf[pos] = 0.f; | buf[pos] = 0.f; | ||||
pos = (pos + 1) % (2 * ZERO_CROSSINGS); | |||||
pos = (pos + 1) % (2 * Z); | |||||
return v; | return v; | ||||
} | } | ||||
}; | }; | ||||
@@ -109,7 +109,7 @@ struct Decimator { | |||||
Decimator(float cutoff = 0.9f) { | Decimator(float cutoff = 0.9f) { | ||||
boxcarLowpassIR(kernel, OVERSAMPLE*QUALITY, cutoff * 0.5f / OVERSAMPLE); | boxcarLowpassIR(kernel, OVERSAMPLE*QUALITY, cutoff * 0.5f / OVERSAMPLE); | ||||
blackmanHarris(kernel, OVERSAMPLE*QUALITY); | |||||
blackmanHarrisWindow(kernel, OVERSAMPLE*QUALITY); | |||||
reset(); | reset(); | ||||
} | } | ||||
void reset() { | void reset() { | ||||