|
|
@@ -1,4 +1,6 @@ |
|
|
|
#pragma once |
|
|
|
#include <atomic> |
|
|
|
|
|
|
|
#include <dsp/common.hpp> |
|
|
|
|
|
|
|
|
|
|
@@ -6,25 +8,30 @@ namespace rack { |
|
|
|
namespace dsp { |
|
|
|
|
|
|
|
|
|
|
|
/** A simple cyclic buffer. |
|
|
|
S must be a power of 2. |
|
|
|
Thread-safe for single producers and consumers. |
|
|
|
/** Lock-free queue with fixed size and no allocations. |
|
|
|
If S is not a power of 2, performance might be reduced, and the index could overflow in a thousand years, but it should usually be fine for your purposes. |
|
|
|
|
|
|
|
Supports only a single producer and consumer. |
|
|
|
To my knowledge, nobody has invented a 100% correct multiple producer/consumer lock-free ring buffer for x86_64. |
|
|
|
*/ |
|
|
|
template <typename T, size_t S> |
|
|
|
struct RingBuffer { |
|
|
|
std::atomic<size_t> start{0}; |
|
|
|
std::atomic<size_t> end{0}; |
|
|
|
T data[S]; |
|
|
|
size_t start = 0; |
|
|
|
size_t end = 0; |
|
|
|
|
|
|
|
size_t mask(size_t i) const { |
|
|
|
return i & (S - 1); |
|
|
|
} |
|
|
|
/** Adds an element to the end of the buffer. |
|
|
|
*/ |
|
|
|
void push(T t) { |
|
|
|
size_t i = mask(end++); |
|
|
|
size_t i = end % S; |
|
|
|
data[i] = t; |
|
|
|
end++; |
|
|
|
} |
|
|
|
/** Copies an array to the end of the buffer. |
|
|
|
`n` must be at most S. |
|
|
|
*/ |
|
|
|
void pushBuffer(const T* t, int n) { |
|
|
|
size_t i = mask(end); |
|
|
|
size_t i = end % S; |
|
|
|
size_t e1 = i + n; |
|
|
|
size_t e2 = (e1 < S) ? e1 : S; |
|
|
|
std::memcpy(&data[i], t, sizeof(T) * (e2 - i)); |
|
|
@@ -33,11 +40,19 @@ struct RingBuffer { |
|
|
|
} |
|
|
|
end += n; |
|
|
|
} |
|
|
|
/** Removes and returns an element from the start of the buffer. |
|
|
|
*/ |
|
|
|
T shift() { |
|
|
|
return data[mask(start++)]; |
|
|
|
size_t i = start % S; |
|
|
|
T t = data[i]; |
|
|
|
start++; |
|
|
|
return t; |
|
|
|
} |
|
|
|
/** Removes and copies an array from the start of the buffer. |
|
|
|
`n` must be at most S. |
|
|
|
*/ |
|
|
|
void shiftBuffer(T* t, size_t n) { |
|
|
|
size_t i = mask(start); |
|
|
|
size_t i = start % S; |
|
|
|
size_t s1 = i + n; |
|
|
|
size_t s2 = (s1 < S) ? s1 : S; |
|
|
|
std::memcpy(t, &data[i], sizeof(T) * (s2 - i)); |
|
|
@@ -47,13 +62,13 @@ struct RingBuffer { |
|
|
|
start += n; |
|
|
|
} |
|
|
|
void clear() { |
|
|
|
start = end; |
|
|
|
start = end.load(); |
|
|
|
} |
|
|
|
bool empty() const { |
|
|
|
return start == end; |
|
|
|
return start >= end; |
|
|
|
} |
|
|
|
bool full() const { |
|
|
|
return end - start == S; |
|
|
|
return end - start >= S; |
|
|
|
} |
|
|
|
size_t size() const { |
|
|
|
return end - start; |
|
|
@@ -64,34 +79,34 @@ struct RingBuffer { |
|
|
|
}; |
|
|
|
|
|
|
|
/** A cyclic buffer which maintains a valid linear array of size S by keeping a copy of the buffer in adjacent memory. |
|
|
|
S must be a power of 2. |
|
|
|
Thread-safe for single producers and consumers? |
|
|
|
This is not thread-safe. |
|
|
|
*/ |
|
|
|
template <typename T, size_t S> |
|
|
|
struct DoubleRingBuffer { |
|
|
|
T data[S * 2]; |
|
|
|
size_t start = 0; |
|
|
|
size_t end = 0; |
|
|
|
std::atomic<size_t> start{0}; |
|
|
|
std::atomic<size_t> end{0}; |
|
|
|
T data[2 * S]; |
|
|
|
|
|
|
|
size_t mask(size_t i) const { |
|
|
|
return i & (S - 1); |
|
|
|
} |
|
|
|
void push(T t) { |
|
|
|
size_t i = mask(end++); |
|
|
|
size_t i = end % S; |
|
|
|
data[i] = t; |
|
|
|
data[i + S] = t; |
|
|
|
end++; |
|
|
|
} |
|
|
|
T shift() { |
|
|
|
return data[mask(start++)]; |
|
|
|
size_t i = start % S; |
|
|
|
T t = data[i]; |
|
|
|
start++; |
|
|
|
return t; |
|
|
|
} |
|
|
|
void clear() { |
|
|
|
start = end; |
|
|
|
start = end.load(); |
|
|
|
} |
|
|
|
bool empty() const { |
|
|
|
return start == end; |
|
|
|
return start >= end; |
|
|
|
} |
|
|
|
bool full() const { |
|
|
|
return end - start == S; |
|
|
|
return end - start >= S; |
|
|
|
} |
|
|
|
size_t size() const { |
|
|
|
return end - start; |
|
|
@@ -104,14 +119,15 @@ struct DoubleRingBuffer { |
|
|
|
Pointer is invalidated when any other method is called. |
|
|
|
*/ |
|
|
|
T* endData() { |
|
|
|
return &data[mask(end)]; |
|
|
|
size_t i = end % S; |
|
|
|
return &data[i]; |
|
|
|
} |
|
|
|
void endIncr(size_t n) { |
|
|
|
size_t e = mask(end); |
|
|
|
size_t e1 = e + n; |
|
|
|
size_t i = end % S; |
|
|
|
size_t e1 = i + n; |
|
|
|
size_t e2 = (e1 < S) ? e1 : S; |
|
|
|
// Copy data forward |
|
|
|
std::memcpy(&data[S + e], &data[e], sizeof(T) * (e2 - e)); |
|
|
|
std::memcpy(&data[S + i], &data[i], sizeof(T) * (e2 - i)); |
|
|
|
|
|
|
|
if (e1 > S) { |
|
|
|
// Copy data backward from the doubled block to the main block |
|
|
@@ -123,7 +139,8 @@ struct DoubleRingBuffer { |
|
|
|
If any data is consumed, call startIncr afterwards. |
|
|
|
*/ |
|
|
|
const T* startData() const { |
|
|
|
return &data[mask(start)]; |
|
|
|
size_t i = start % S; |
|
|
|
return &data[i]; |
|
|
|
} |
|
|
|
void startIncr(size_t n) { |
|
|
|
start += n; |
|
|
@@ -131,6 +148,7 @@ struct DoubleRingBuffer { |
|
|
|
}; |
|
|
|
|
|
|
|
/** A cyclic buffer which maintains a valid linear array of size S by sliding along a larger block of size N. |
|
|
|
This is not thread-safe. |
|
|
|
The linear array of S elements are moved back to the start of the block once it outgrows past the end. |
|
|
|
This happens every N - S pushes, so the push() time is O(1 + S / (N - S)). |
|
|
|
For example, a float buffer of size 64 in a block of size 1024 is nearly as efficient as RingBuffer. |
|
|
@@ -138,9 +156,9 @@ Not thread-safe. |
|
|
|
*/ |
|
|
|
template <typename T, size_t S, size_t N> |
|
|
|
struct AppleRingBuffer { |
|
|
|
T data[N]; |
|
|
|
size_t start = 0; |
|
|
|
size_t end = 0; |
|
|
|
T data[N]; |
|
|
|
|
|
|
|
void returnBuffer() { |
|
|
|
// move end block to beginning |
|
|
|