| @@ -0,0 +1,105 @@ | |||
| #include <x86intrin.h> | |||
| #define ALIGN(n) __attribute__((aligned(n))) | |||
| namespace simd { | |||
| template <int N> | |||
| struct f32; | |||
| /** Wrapper for `__m128` representing a vector of 4 single-precision float values. */ | |||
| template <> | |||
| struct f32<4> { | |||
| __m128 v; | |||
| f32<4>() {} | |||
| f32<4>(__m128 v) : v(v) {} | |||
| template <typename T> | |||
| f32<4>(T x) { | |||
| v = _mm_set_ps1((float) x); | |||
| } | |||
| /** Reads an array of 4 values */ | |||
| f32<4>(const float *x) { | |||
| v = _mm_loadu_ps(x); | |||
| } | |||
| /** Writes an array of 4 values */ | |||
| void store(float *x) { | |||
| _mm_storeu_ps(x, v); | |||
| } | |||
| }; | |||
| // Operator overloads | |||
| #define DECLARE_F32_4_OPERATOR_INFIX(operator, func) \ | |||
| inline f32<4> operator(f32<4> a, f32<4> b) { \ | |||
| return f32<4>(func(a.v, b.v)); \ | |||
| } \ | |||
| template <typename T> \ | |||
| f32<4> operator(T a, f32<4> b) { \ | |||
| return operator(f32<4>(a), b); \ | |||
| } \ | |||
| template <typename T> \ | |||
| f32<4> operator(f32<4> a, T b) { \ | |||
| return operator(a, f32<4>(b)); \ | |||
| } | |||
| DECLARE_F32_4_OPERATOR_INFIX(operator+, _mm_add_ps) | |||
| DECLARE_F32_4_OPERATOR_INFIX(operator-, _mm_sub_ps) | |||
| DECLARE_F32_4_OPERATOR_INFIX(operator*, _mm_mul_ps) | |||
| DECLARE_F32_4_OPERATOR_INFIX(operator/, _mm_div_ps) | |||
| DECLARE_F32_4_OPERATOR_INFIX(operator==, _mm_cmpeq_ps) | |||
| DECLARE_F32_4_OPERATOR_INFIX(operator>=, _mm_cmpge_ps) | |||
| DECLARE_F32_4_OPERATOR_INFIX(operator>, _mm_cmpgt_ps) | |||
| DECLARE_F32_4_OPERATOR_INFIX(operator<=, _mm_cmple_ps) | |||
| DECLARE_F32_4_OPERATOR_INFIX(operator<, _mm_cmplt_ps) | |||
| DECLARE_F32_4_OPERATOR_INFIX(operator!=, _mm_cmpneq_ps) | |||
| #define DECLARE_F32_4_OPERATOR_INCREMENT(operator, func) \ | |||
| inline f32<4> &operator(f32<4> &a, f32<4> b) { \ | |||
| a.v = func(a.v, b.v); \ | |||
| return a; \ | |||
| } \ | |||
| template <typename T> \ | |||
| f32<4> &operator(f32<4> &a, T b) { \ | |||
| return operator(a, f32<4>(b)); \ | |||
| } | |||
| DECLARE_F32_4_OPERATOR_INCREMENT(operator+=, _mm_add_ps); | |||
| DECLARE_F32_4_OPERATOR_INCREMENT(operator-=, _mm_sub_ps); | |||
| DECLARE_F32_4_OPERATOR_INCREMENT(operator*=, _mm_mul_ps); | |||
| DECLARE_F32_4_OPERATOR_INCREMENT(operator/=, _mm_div_ps); | |||
| inline f32<4> rsqrt(f32<4> a) { | |||
| return f32<4>(_mm_rsqrt_ps(a.v)); | |||
| } | |||
| inline f32<4> rcp(f32<4> a) { | |||
| return f32<4>(_mm_rcp_ps(a.v)); | |||
| } | |||
| } // namespace simd | |||
| namespace std { | |||
| inline simd::f32<4> max(simd::f32<4> a, simd::f32<4> b) { | |||
| return simd::f32<4>(_mm_max_ps(a.v, b.v)); | |||
| } | |||
| inline simd::f32<4> min(simd::f32<4> a, simd::f32<4> b) { | |||
| return simd::f32<4>(_mm_min_ps(a.v, b.v)); | |||
| } | |||
| inline simd::f32<4> sqrt(simd::f32<4> a) { | |||
| return simd::f32<4>(_mm_sqrt_ps(a.v)); | |||
| } | |||
| } // namespace std | |||