#include "plugin.hpp" static float clip(float x) { return std::tanh(x); } struct LadderFilter { float omega0; float resonance = 1.f; float state[4]; float input; float lowpass; float highpass; LadderFilter() { reset(); setCutoff(0.f); } void reset() { for (int i = 0; i < 4; i++) { state[i] = 0.f; } } void setCutoff(float cutoff) { omega0 = 2.f*M_PI * cutoff; } void process(float input, float dt) { dsp::stepRK4(0.f, dt, state, 4, [&](float t, const float x[], float dxdt[]) { float inputc = clip(input - resonance * x[3]); float yc0 = clip(x[0]); float yc1 = clip(x[1]); float yc2 = clip(x[2]); float yc3 = clip(x[3]); dxdt[0] = omega0 * (inputc - yc0); dxdt[1] = omega0 * (yc0 - yc1); dxdt[2] = omega0 * (yc1 - yc2); dxdt[3] = omega0 * (yc2 - yc3); }); lowpass = state[3]; // TODO This is incorrect when `resonance > 0`. Is the math wrong? highpass = clip((input - resonance*state[3]) - 4 * state[0] + 6*state[1] - 4*state[2] + state[3]); } }; static const int UPSAMPLE = 2; struct VCF : Module { enum ParamIds { FREQ_PARAM, FINE_PARAM, RES_PARAM, FREQ_CV_PARAM, DRIVE_PARAM, NUM_PARAMS }; enum InputIds { FREQ_INPUT, RES_INPUT, DRIVE_INPUT, IN_INPUT, NUM_INPUTS }; enum OutputIds { LPF_OUTPUT, HPF_OUTPUT, NUM_OUTPUTS }; LadderFilter filter; // Upsampler inputUpsampler; // Decimator lowpassDecimator; // Decimator highpassDecimator; VCF() { config(NUM_PARAMS, NUM_INPUTS, NUM_OUTPUTS); params[FREQ_PARAM].config(0.f, 1.f, 0.5f, "Frequency"); params[FINE_PARAM].config(0.f, 1.f, 0.5f, "Fine frequency"); params[RES_PARAM].config(0.f, 1.f, 0.f, "Resonance"); params[FREQ_CV_PARAM].config(-1.f, 1.f, 0.f, "Frequency modulation"); params[DRIVE_PARAM].config(0.f, 1.f, 0.f, "Drive"); } void onReset() override { filter.reset(); } void process(const ProcessArgs &args) override { if (!outputs[LPF_OUTPUT].isConnected() && !outputs[HPF_OUTPUT].isConnected()) { outputs[LPF_OUTPUT].setVoltage(0.f); outputs[HPF_OUTPUT].setVoltage(0.f); return; } float input = inputs[IN_INPUT].getVoltage() / 5.f; float drive = clamp(params[DRIVE_PARAM].getValue() + inputs[DRIVE_INPUT].getVoltage() / 10.f, 0.f, 1.f); float gain = std::pow(1.f + drive, 5); input *= gain; // Add -60dB noise to bootstrap self-oscillation input += 1e-6f * (2.f * random::uniform() - 1.f); // Set resonance float res = clamp(params[RES_PARAM].getValue() + inputs[RES_INPUT].getVoltage() / 10.f, 0.f, 1.f); filter.resonance = std::pow(res, 2) * 10.f; // Set cutoff frequency float pitch = 0.f; if (inputs[FREQ_INPUT].isConnected()) pitch += inputs[FREQ_INPUT].getVoltage() * dsp::quadraticBipolar(params[FREQ_CV_PARAM].getValue()); pitch += params[FREQ_PARAM].getValue() * 10.f - 5.f; pitch += dsp::quadraticBipolar(params[FINE_PARAM].getValue() * 2.f - 1.f) * 7.f / 12.f; float cutoff = 261.626f * std::pow(2.f, pitch); cutoff = clamp(cutoff, 1.f, 8000.f); filter.setCutoff(cutoff); /* // Process sample float dt = args.sampleTime / UPSAMPLE; float inputBuf[UPSAMPLE]; float lowpassBuf[UPSAMPLE]; float highpassBuf[UPSAMPLE]; inputUpsampler.process(input, inputBuf); for (int i = 0; i < UPSAMPLE; i++) { // Step the filter filter.process(inputBuf[i], dt); lowpassBuf[i] = filter.lowpass; highpassBuf[i] = filter.highpass; } // Set outputs if (outputs[LPF_OUTPUT].isConnected()) { outputs[LPF_OUTPUT].setVoltage(5.f * lowpassDecimator.process(lowpassBuf)); } if (outputs[HPF_OUTPUT].isConnected()) { outputs[HPF_OUTPUT].setVoltage(5.f * highpassDecimator.process(highpassBuf)); } */ filter.process(input, args.sampleTime); outputs[LPF_OUTPUT].setVoltage(5.f * filter.lowpass); outputs[HPF_OUTPUT].setVoltage(5.f * filter.highpass); } }; struct VCFWidget : ModuleWidget { VCFWidget(VCF *module) { setModule(module); setPanel(APP->window->loadSvg(asset::plugin(pluginInstance, "res/VCF.svg"))); addChild(createWidget(Vec(15, 0))); addChild(createWidget(Vec(box.size.x - 30, 0))); addChild(createWidget(Vec(15, 365))); addChild(createWidget(Vec(box.size.x - 30, 365))); addParam(createParam(Vec(33, 61), module, VCF::FREQ_PARAM)); addParam(createParam(Vec(12, 143), module, VCF::FINE_PARAM)); addParam(createParam(Vec(71, 143), module, VCF::RES_PARAM)); addParam(createParam(Vec(12, 208), module, VCF::FREQ_CV_PARAM)); addParam(createParam(Vec(71, 208), module, VCF::DRIVE_PARAM)); addInput(createInput(Vec(10, 276), module, VCF::FREQ_INPUT)); addInput(createInput(Vec(48, 276), module, VCF::RES_INPUT)); addInput(createInput(Vec(85, 276), module, VCF::DRIVE_INPUT)); addInput(createInput(Vec(10, 320), module, VCF::IN_INPUT)); addOutput(createOutput(Vec(48, 320), module, VCF::LPF_OUTPUT)); addOutput(createOutput(Vec(85, 320), module, VCF::HPF_OUTPUT)); } }; Model *modelVCF = createModel("VCF");