| @@ -13,18 +13,20 @@ | |||||
| #include "Fundamental.hpp" | #include "Fundamental.hpp" | ||||
| #include "dsp/functions.hpp" | |||||
| // The clipping function of a transistor pair is approximately tanh(x) | // The clipping function of a transistor pair is approximately tanh(x) | ||||
| // This one is a Pade-approx for tanh(sqrt(x))/sqrt(x) | // This one is a Pade-approx for tanh(sqrt(x))/sqrt(x) | ||||
| inline float clip(float x) { | inline float clip(float x) { | ||||
| float a = x*x; | |||||
| float a = x*x; | |||||
| return ((a + 105)*a + 945) / ((15*a + 420)*a + 945); | return ((a + 105)*a + 945) / ((15*a + 420)*a + 945); | ||||
| } | } | ||||
| struct LadderFilter { | struct LadderFilter { | ||||
| float g = 0.1f; | |||||
| float resonance = 0.5f; | |||||
| float g = 0.f; | |||||
| float resonance = 0.f; | |||||
| float state[4] = {}; | float state[4] = {}; | ||||
| float zi = 0.f; | float zi = 0.f; | ||||
| float output[3] = {}; | float output[3] = {}; | ||||
| @@ -42,28 +44,28 @@ struct LadderFilter { | |||||
| // update last LP1 output | // update last LP1 output | ||||
| const float t2t3 = t2*t3; | const float t2t3 = t2*t3; | ||||
| float y3 = (s[3]*(1+t3) + s[2]*t3)*(1+t2); | |||||
| y3 = (y3 + t2t3*s[1])*(1+t1); | |||||
| y3 = (y3 + t1*t2t3*(s[0]+t0*input)); | |||||
| float y3 = (state[3]*(1+t3) + state[2]*t3)*(1+t2); | |||||
| y3 = (y3 + t2t3*state[1])*(1+t1); | |||||
| y3 = (y3 + t1*t2t3*(state[0]+t0*input)); | |||||
| y3 = y3 / ((1+t1)*(1+t2)*(1+t3)*(1+t4) + resonance*t0*t1*t2t3); | y3 = y3 / ((1+t1)*(1+t2)*(1+t3)*(1+t4) + resonance*t0*t1*t2t3); | ||||
| // update other LP1 outputs | |||||
| // update other LP1 outputs | |||||
| const float xx = t0 * (input - resonance * y3); | const float xx = t0 * (input - resonance * y3); | ||||
| const float y0 = t1 * (s[0] + xx) / (1+t1); | |||||
| const float y1 = t2 * (s[1] + y0) / (1+t2); | |||||
| const float y2 = t3 * (s[2] + y1) / (1+t3); | |||||
| const float y0 = t1 * (state[0] + xx) / (1+t1); | |||||
| const float y1 = t2 * (state[1] + y0) / (1+t2); | |||||
| const float y2 = t3 * (state[2] + y1) / (1+t3); | |||||
| // update states | // update states | ||||
| s[0] += 2 * (xx - y0); | |||||
| s[1] += 2 * (y0 - y1); | |||||
| s[2] += 2 * (y1 - y2); | |||||
| s[3] += 2 * (y2 - t4*y3); | |||||
| state[0] += 2 * (xx - y0); | |||||
| state[1] += 2 * (y0 - y1); | |||||
| state[2] += 2 * (y1 - y2); | |||||
| state[3] += 2 * (y2 - t4*y3); | |||||
| // returns LP, HP and BP outputs | // returns LP, HP and BP outputs | ||||
| const float y1t2 = y1 / t2; | const float y1t2 = y1 / t2; | ||||
| const float y2t3 = y2 / t3; | const float y2t3 = y2 / t3; | ||||
| output[0] = y3; | output[0] = y3; | ||||
| output[1] = xx/t0 - 4*y0/t1 + 6*y1t2 - 4*y2t3 + y3; | output[1] = xx/t0 - 4*y0/t1 + 6*y1t2 - 4*y2t3 + y3; | ||||
| output[2] = y1t2 - 2*y2t3 + y3; | output[2] = y1t2 - 2*y2t3 + y3; | ||||
| @@ -74,7 +76,7 @@ struct LadderFilter { | |||||
| void reset() { | void reset() { | ||||
| for (int i = 0; i < 4; i++) { | for (int i = 0; i < 4; i++) { | ||||
| state[i] = 0.0f; | |||||
| state[i] = 0.f; | |||||
| } | } | ||||
| zi = 0.f; | zi = 0.f; | ||||
| } | } | ||||
| @@ -114,33 +116,33 @@ struct VCF : Module { | |||||
| void VCF::step() { | void VCF::step() { | ||||
| float input = inputs[IN_INPUT].value / 5.0f; | |||||
| float drive = params[DRIVE_PARAM].value + inputs[DRIVE_INPUT].value / 10.0f; | |||||
| float gain = powf(100.0f, drive); | |||||
| float input = inputs[IN_INPUT].value / 5.f; | |||||
| float gain = powf(1.f + params[DRIVE_PARAM].value, 5); | |||||
| if (inputs[DRIVE_INPUT].active) | |||||
| gain *= inputs[DRIVE_INPUT].value / 10.f; | |||||
| input *= gain; | input *= gain; | ||||
| // Add -60dB noise to bootstrap self-oscillation | // Add -60dB noise to bootstrap self-oscillation | ||||
| input += 1e-6f * (2.0f*randomUniform() - 1.0f); | |||||
| input += 1e-6f * (2.f*randomUniform() - 1.f); | |||||
| // Set resonance | // Set resonance | ||||
| float res = params[RES_PARAM].value + inputs[RES_INPUT].value / 5.0f; | |||||
| res = clamp(res, 0.0f, 1.0f); // resonance must be between 0 and 1 | |||||
| filter.resonance = res; | |||||
| float res = clamp(params[RES_PARAM].value + inputs[RES_INPUT].value / 10.f, 0.f, 1.f); | |||||
| filter.resonance = powf(res, 2) * 10.f; | |||||
| // Set cutoff frequency | // Set cutoff frequency | ||||
| float cutoffExp = params[FREQ_PARAM].value + params[FREQ_CV_PARAM].value * inputs[FREQ_INPUT].value / 5.0f; | |||||
| cutoffExp = clamp(cutoffExp, 0.0f, 1.0f); | |||||
| const float minCutoff = 15.0f; | |||||
| const float maxCutoff = 20000.0f; | |||||
| float cutoff = minCutoff * powf(maxCutoff / minCutoff, cutoffExp); | |||||
| filter.g = tanf(float_Pi * cutoff / engineGetSampleRate()); | |||||
| float pitch = inputs[FREQ_INPUT].value * quadraticBipolar(params[FREQ_CV_PARAM].value); | |||||
| pitch += params[FREQ_PARAM].value * 10.f - 3.f; | |||||
| pitch += quadraticBipolar(params[FINE_PARAM].value * 2.f - 1.f) * 7.f/12.f; | |||||
| float cutoff = 261.626f * powf(2.f, pitch); | |||||
| cutoff = clamp(cutoff, 1.f, 20000.f); | |||||
| filter.g = tanf(M_PI * cutoff * engineGetSampleTime()); | |||||
| // Push a sample to the state filter | // Push a sample to the state filter | ||||
| filter.process(input); | filter.process(input); | ||||
| // Set outputs | // Set outputs | ||||
| outputs[LPF_OUTPUT].value = 5.0f * filter.output[0]; | |||||
| outputs[HPF_OUTPUT].value = 5.0f * filter.output[1]; | |||||
| //outputs[BPF_OUTPUT].value = 5.0f * filter.output[2]; | |||||
| outputs[LPF_OUTPUT].value = 5.f * filter.output[0]; | |||||
| outputs[HPF_OUTPUT].value = 5.f * filter.output[1]; | |||||
| //outputs[BPF_OUTPUT].value = 5.f * filter.output[2]; | |||||
| } | } | ||||
| @@ -156,11 +158,11 @@ VCFWidget::VCFWidget(VCF *module) : ModuleWidget(module) { | |||||
| addChild(Widget::create<ScrewSilver>(Vec(15, 365))); | addChild(Widget::create<ScrewSilver>(Vec(15, 365))); | ||||
| addChild(Widget::create<ScrewSilver>(Vec(box.size.x-30, 365))); | addChild(Widget::create<ScrewSilver>(Vec(box.size.x-30, 365))); | ||||
| addParam(ParamWidget::create<RoundHugeBlackKnob>(Vec(33, 61), module, VCF::FREQ_PARAM, 0.0f, 1.0f, 0.5f)); | |||||
| addParam(ParamWidget::create<RoundLargeBlackKnob>(Vec(12, 143), module, VCF::FINE_PARAM, 0.0f, 1.0f, 0.5f)); | |||||
| addParam(ParamWidget::create<RoundLargeBlackKnob>(Vec(71, 143), module, VCF::RES_PARAM, 0.0f, 1.0f, 0.0f)); | |||||
| addParam(ParamWidget::create<RoundLargeBlackKnob>(Vec(12, 208), module, VCF::FREQ_CV_PARAM, -1.0f, 1.0f, 0.0f)); | |||||
| addParam(ParamWidget::create<RoundLargeBlackKnob>(Vec(71, 208), module, VCF::DRIVE_PARAM, 0.0f, 1.0f, 0.0f)); | |||||
| addParam(ParamWidget::create<RoundHugeBlackKnob>(Vec(33, 61), module, VCF::FREQ_PARAM, 0.f, 1.f, 0.5f)); | |||||
| addParam(ParamWidget::create<RoundLargeBlackKnob>(Vec(12, 143), module, VCF::FINE_PARAM, 0.f, 1.f, 0.5f)); | |||||
| addParam(ParamWidget::create<RoundLargeBlackKnob>(Vec(71, 143), module, VCF::RES_PARAM, 0.f, 1.f, 0.f)); | |||||
| addParam(ParamWidget::create<RoundLargeBlackKnob>(Vec(12, 208), module, VCF::FREQ_CV_PARAM, -1.f, 1.f, 0.f)); | |||||
| addParam(ParamWidget::create<RoundLargeBlackKnob>(Vec(71, 208), module, VCF::DRIVE_PARAM, 0.f, 1.f, 0.f)); | |||||
| addInput(Port::create<PJ301MPort>(Vec(10, 276), Port::INPUT, module, VCF::FREQ_INPUT)); | addInput(Port::create<PJ301MPort>(Vec(10, 276), Port::INPUT, module, VCF::FREQ_INPUT)); | ||||
| addInput(Port::create<PJ301MPort>(Vec(48, 276), Port::INPUT, module, VCF::RES_INPUT)); | addInput(Port::create<PJ301MPort>(Vec(48, 276), Port::INPUT, module, VCF::RES_INPUT)); | ||||