|
@@ -18,157 +18,152 @@ |
|
|
// The clipping function of a transistor pair is approximately tanh(x) |
|
|
// The clipping function of a transistor pair is approximately tanh(x) |
|
|
// This one is a Pade-approx for tanh(sqrt(x))/sqrt(x) |
|
|
// This one is a Pade-approx for tanh(sqrt(x))/sqrt(x) |
|
|
inline float clip(float x) { |
|
|
inline float clip(float x) { |
|
|
float a = x*x; |
|
|
|
|
|
return ((a + 105)*a + 945) / ((15*a + 420)*a + 945); |
|
|
|
|
|
|
|
|
float a = x*x; |
|
|
|
|
|
return ((a + 105)*a + 945) / ((15*a + 420)*a + 945); |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
struct LadderFilter { |
|
|
struct LadderFilter { |
|
|
float g = 0.1f; |
|
|
|
|
|
float resonance = 0.5f; |
|
|
|
|
|
float state[4] = {}; |
|
|
|
|
|
float zi = 0.f; |
|
|
|
|
|
float output[3] = {}; |
|
|
|
|
|
|
|
|
|
|
|
void process(float input) { |
|
|
|
|
|
// input with half delay, for non-linearities |
|
|
|
|
|
const float ih = 0.5f * (input + zi); |
|
|
|
|
|
|
|
|
|
|
|
// evaluate the non-linear gains |
|
|
|
|
|
const float t0 = g * clip(ih - resonance * state[3]); |
|
|
|
|
|
const float t1 = g * clip(state[0]); |
|
|
|
|
|
const float t2 = g * clip(state[1]); |
|
|
|
|
|
const float t3 = g * clip(state[2]); |
|
|
|
|
|
const float t4 = g * clip(state[3]); |
|
|
|
|
|
|
|
|
|
|
|
// update last LP1 output |
|
|
|
|
|
const float t2t3 = t2*t3; |
|
|
|
|
|
|
|
|
|
|
|
float y3 = (s[3]*(1+t3) + s[2]*t3)*(1+t2); |
|
|
|
|
|
y3 = (y3 + t2t3*s[1])*(1+t1); |
|
|
|
|
|
y3 = (y3 + t1*t2t3*(s[0]+t0*input)); |
|
|
|
|
|
y3 = y3 / ((1+t1)*(1+t2)*(1+t3)*(1+t4) + resonance*t0*t1*t2t3); |
|
|
|
|
|
|
|
|
|
|
|
// update other LP1 outputs |
|
|
|
|
|
const float xx = t0 * (input - resonance * y3); |
|
|
|
|
|
const float y0 = t1 * (s[0] + xx) / (1+t1); |
|
|
|
|
|
const float y1 = t2 * (s[1] + y0) / (1+t2); |
|
|
|
|
|
const float y2 = t3 * (s[2] + y1) / (1+t3); |
|
|
|
|
|
|
|
|
|
|
|
// update states |
|
|
|
|
|
s[0] += 2 * (xx - y0); |
|
|
|
|
|
s[1] += 2 * (y0 - y1); |
|
|
|
|
|
s[2] += 2 * (y1 - y2); |
|
|
|
|
|
s[3] += 2 * (y2 - t4*y3); |
|
|
|
|
|
|
|
|
|
|
|
// returns LP, HP and BP outputs |
|
|
|
|
|
float y1t2 = y1/t2; |
|
|
|
|
|
float y2t3 = y2/t3; |
|
|
|
|
|
|
|
|
|
|
|
output[0] = y3; |
|
|
|
|
|
output[1] = xx/t0 - 4*y0/t1 + 6*y1t2 - 4*y2t3 + y3; |
|
|
|
|
|
output[2] = y1t2 - 2*y2t3 + y3; |
|
|
|
|
|
|
|
|
|
|
|
// update delay input state |
|
|
|
|
|
zi = input; |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
void reset() { |
|
|
|
|
|
for (int i = 0; i < 4; i++) { |
|
|
|
|
|
state[i] = 0.0f; |
|
|
|
|
|
} |
|
|
|
|
|
zi = 0.f; |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
float g = 0.1f; |
|
|
|
|
|
float resonance = 0.5f; |
|
|
|
|
|
float state[4] = {}; |
|
|
|
|
|
float zi = 0.f; |
|
|
|
|
|
float output[3] = {}; |
|
|
|
|
|
|
|
|
|
|
|
void process(float input) { |
|
|
|
|
|
// input with half delay, for non-linearities |
|
|
|
|
|
const float ih = 0.5f * (input + zi); |
|
|
|
|
|
|
|
|
|
|
|
// evaluate the non-linear gains |
|
|
|
|
|
const float t0 = g * clip(ih - resonance * state[3]); |
|
|
|
|
|
const float t1 = g * clip(state[0]); |
|
|
|
|
|
const float t2 = g * clip(state[1]); |
|
|
|
|
|
const float t3 = g * clip(state[2]); |
|
|
|
|
|
const float t4 = g * clip(state[3]); |
|
|
|
|
|
|
|
|
|
|
|
// update last LP1 output |
|
|
|
|
|
float y3 = (s[3]*(1+t3) + s[2]*t3)*(1+t2); |
|
|
|
|
|
y3 = (y3 + t2*t3*s[1])*(1+t1); |
|
|
|
|
|
y3 = (y3 + t1*t2*t3*(s[0]+t0*input)); |
|
|
|
|
|
y3 = y3 / ((1+t1)*(1+t2)*(1+t3)*(1+t4) + resonance*t0*t1*t2*t3); |
|
|
|
|
|
|
|
|
|
|
|
// update other LP1 outputs |
|
|
|
|
|
const float xx = t0 * (input - resonance * y3); |
|
|
|
|
|
const float y0 = t1 * (s[0] + xx) / (1+t1); |
|
|
|
|
|
const float y1 = t2 * (s[1] + y0) / (1+t2); |
|
|
|
|
|
const float y2 = t3 * (s[2] + y1) / (1+t3); |
|
|
|
|
|
|
|
|
|
|
|
// update states |
|
|
|
|
|
s[0] += 2 * (xx - y0); |
|
|
|
|
|
s[1] += 2 * (y0 - y1); |
|
|
|
|
|
s[2] += 2 * (y1 - y2); |
|
|
|
|
|
s[3] += 2 * (y2 - t4*y3); |
|
|
|
|
|
|
|
|
|
|
|
// returns LP, HP and BP outputs |
|
|
|
|
|
output[0] = y3; |
|
|
|
|
|
output[1] = xx/t0 - 4*y0/t1 + 6*y1/t2 - 4*y2/t3 + y3; |
|
|
|
|
|
output[2] = y1/t2 - 2*y2/t3 + y3; |
|
|
|
|
|
|
|
|
|
|
|
// update delay input state |
|
|
|
|
|
zi = input; |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
void reset() { |
|
|
|
|
|
for (int i = 0; i < 4; i++) { |
|
|
|
|
|
state[i] = 0.0f; |
|
|
|
|
|
} |
|
|
|
|
|
zi = 0.f; |
|
|
|
|
|
} |
|
|
}; |
|
|
}; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
struct VCF : Module { |
|
|
struct VCF : Module { |
|
|
enum ParamIds { |
|
|
|
|
|
FREQ_PARAM, |
|
|
|
|
|
FINE_PARAM, |
|
|
|
|
|
RES_PARAM, |
|
|
|
|
|
FREQ_CV_PARAM, |
|
|
|
|
|
DRIVE_PARAM, |
|
|
|
|
|
NUM_PARAMS |
|
|
|
|
|
}; |
|
|
|
|
|
enum InputIds { |
|
|
|
|
|
FREQ_INPUT, |
|
|
|
|
|
RES_INPUT, |
|
|
|
|
|
DRIVE_INPUT, |
|
|
|
|
|
IN_INPUT, |
|
|
|
|
|
NUM_INPUTS |
|
|
|
|
|
}; |
|
|
|
|
|
enum OutputIds { |
|
|
|
|
|
LPF_OUTPUT, |
|
|
|
|
|
HPF_OUTPUT, |
|
|
|
|
|
NUM_OUTPUTS |
|
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
|
|
LadderFilter filter; |
|
|
|
|
|
|
|
|
|
|
|
VCF() : Module(NUM_PARAMS, NUM_INPUTS, NUM_OUTPUTS) {} |
|
|
|
|
|
void step() override; |
|
|
|
|
|
void onReset() override { |
|
|
|
|
|
filter.reset(); |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
enum ParamIds { |
|
|
|
|
|
FREQ_PARAM, |
|
|
|
|
|
FINE_PARAM, |
|
|
|
|
|
RES_PARAM, |
|
|
|
|
|
FREQ_CV_PARAM, |
|
|
|
|
|
DRIVE_PARAM, |
|
|
|
|
|
NUM_PARAMS |
|
|
|
|
|
}; |
|
|
|
|
|
enum InputIds { |
|
|
|
|
|
FREQ_INPUT, |
|
|
|
|
|
RES_INPUT, |
|
|
|
|
|
DRIVE_INPUT, |
|
|
|
|
|
IN_INPUT, |
|
|
|
|
|
NUM_INPUTS |
|
|
|
|
|
}; |
|
|
|
|
|
enum OutputIds { |
|
|
|
|
|
LPF_OUTPUT, |
|
|
|
|
|
HPF_OUTPUT, |
|
|
|
|
|
NUM_OUTPUTS |
|
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
|
|
LadderFilter filter; |
|
|
|
|
|
|
|
|
|
|
|
VCF() : Module(NUM_PARAMS, NUM_INPUTS, NUM_OUTPUTS) {} |
|
|
|
|
|
void step() override; |
|
|
|
|
|
void onReset() override { |
|
|
|
|
|
filter.reset(); |
|
|
|
|
|
} |
|
|
}; |
|
|
}; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void VCF::step() { |
|
|
void VCF::step() { |
|
|
float input = inputs[IN_INPUT].value / 5.0f; |
|
|
|
|
|
float drive = params[DRIVE_PARAM].value + inputs[DRIVE_INPUT].value / 10.0f; |
|
|
|
|
|
float gain = powf(100.0f, drive); |
|
|
|
|
|
input *= gain; |
|
|
|
|
|
// Add -60dB noise to bootstrap self-oscillation |
|
|
|
|
|
input += 1e-6f * (2.0f*randomUniform() - 1.0f); |
|
|
|
|
|
|
|
|
|
|
|
// Set resonance |
|
|
|
|
|
float res = params[RES_PARAM].value + inputs[RES_INPUT].value / 5.0f; |
|
|
|
|
|
res = clamp(res, 0.0f, 1.0f); // resonance must be between 0 and 1 |
|
|
|
|
|
filter.resonance = res; |
|
|
|
|
|
|
|
|
|
|
|
// Set cutoff frequency |
|
|
|
|
|
float cutoffExp = params[FREQ_PARAM].value + params[FREQ_CV_PARAM].value * inputs[FREQ_INPUT].value / 5.0f; |
|
|
|
|
|
cutoffExp = clamp(cutoffExp, 0.0f, 1.0f); |
|
|
|
|
|
const float minCutoff = 15.0f; |
|
|
|
|
|
const float maxCutoff = 20000.0f; |
|
|
|
|
|
float cutoff = minCutoff * powf(maxCutoff / minCutoff, cutoffExp); |
|
|
|
|
|
filter.g = tanf(float_Pi * cutoff / engineGetSampleRate()); |
|
|
|
|
|
|
|
|
|
|
|
// Push a sample to the state filter |
|
|
|
|
|
filter.process(input); |
|
|
|
|
|
|
|
|
|
|
|
// Set outputs |
|
|
|
|
|
outputs[LPF_OUTPUT].value = 5.0f * filter.output[0]; |
|
|
|
|
|
outputs[HPF_OUTPUT].value = 5.0f * filter.output[1]; |
|
|
|
|
|
//outputs[BPF_OUTPUT].value = 5.0f * filter.output[2]; |
|
|
|
|
|
|
|
|
float input = inputs[IN_INPUT].value / 5.0f; |
|
|
|
|
|
float drive = params[DRIVE_PARAM].value + inputs[DRIVE_INPUT].value / 10.0f; |
|
|
|
|
|
float gain = powf(100.0f, drive); |
|
|
|
|
|
input *= gain; |
|
|
|
|
|
// Add -60dB noise to bootstrap self-oscillation |
|
|
|
|
|
input += 1e-6f * (2.0f*randomUniform() - 1.0f); |
|
|
|
|
|
|
|
|
|
|
|
// Set resonance |
|
|
|
|
|
float res = params[RES_PARAM].value + inputs[RES_INPUT].value / 5.0f; |
|
|
|
|
|
res = clamp(res, 0.0f, 1.0f); // resonance must be between 0 and 1 |
|
|
|
|
|
filter.resonance = res; |
|
|
|
|
|
|
|
|
|
|
|
// Set cutoff frequency |
|
|
|
|
|
float cutoffExp = params[FREQ_PARAM].value + params[FREQ_CV_PARAM].value * inputs[FREQ_INPUT].value / 5.0f; |
|
|
|
|
|
cutoffExp = clamp(cutoffExp, 0.0f, 1.0f); |
|
|
|
|
|
const float minCutoff = 15.0f; |
|
|
|
|
|
const float maxCutoff = 20000.0f; |
|
|
|
|
|
float cutoff = minCutoff * powf(maxCutoff / minCutoff, cutoffExp); |
|
|
|
|
|
filter.g = tanf(float_Pi * cutoff / engineGetSampleRate()); |
|
|
|
|
|
|
|
|
|
|
|
// Push a sample to the state filter |
|
|
|
|
|
filter.process(input); |
|
|
|
|
|
|
|
|
|
|
|
// Set outputs |
|
|
|
|
|
outputs[LPF_OUTPUT].value = 5.0f * filter.output[0]; |
|
|
|
|
|
outputs[HPF_OUTPUT].value = 5.0f * filter.output[1]; |
|
|
|
|
|
//outputs[BPF_OUTPUT].value = 5.0f * filter.output[2]; |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
struct VCFWidget : ModuleWidget { |
|
|
struct VCFWidget : ModuleWidget { |
|
|
VCFWidget(VCF *module); |
|
|
|
|
|
|
|
|
VCFWidget(VCF *module); |
|
|
}; |
|
|
}; |
|
|
|
|
|
|
|
|
VCFWidget::VCFWidget(VCF *module) : ModuleWidget(module) { |
|
|
VCFWidget::VCFWidget(VCF *module) : ModuleWidget(module) { |
|
|
setPanel(SVG::load(assetPlugin(plugin, "res/VCF.svg"))); |
|
|
|
|
|
|
|
|
|
|
|
addChild(Widget::create<ScrewSilver>(Vec(15, 0))); |
|
|
|
|
|
addChild(Widget::create<ScrewSilver>(Vec(box.size.x-30, 0))); |
|
|
|
|
|
addChild(Widget::create<ScrewSilver>(Vec(15, 365))); |
|
|
|
|
|
addChild(Widget::create<ScrewSilver>(Vec(box.size.x-30, 365))); |
|
|
|
|
|
|
|
|
|
|
|
addParam(ParamWidget::create<RoundHugeBlackKnob>(Vec(33, 61), module, VCF::FREQ_PARAM, 0.0f, 1.0f, 0.5f)); |
|
|
|
|
|
addParam(ParamWidget::create<RoundLargeBlackKnob>(Vec(12, 143), module, VCF::FINE_PARAM, 0.0f, 1.0f, 0.5f)); |
|
|
|
|
|
addParam(ParamWidget::create<RoundLargeBlackKnob>(Vec(71, 143), module, VCF::RES_PARAM, 0.0f, 1.0f, 0.0f)); |
|
|
|
|
|
addParam(ParamWidget::create<RoundLargeBlackKnob>(Vec(12, 208), module, VCF::FREQ_CV_PARAM, -1.0f, 1.0f, 0.0f)); |
|
|
|
|
|
addParam(ParamWidget::create<RoundLargeBlackKnob>(Vec(71, 208), module, VCF::DRIVE_PARAM, 0.0f, 1.0f, 0.0f)); |
|
|
|
|
|
|
|
|
|
|
|
addInput(Port::create<PJ301MPort>(Vec(10, 276), Port::INPUT, module, VCF::FREQ_INPUT)); |
|
|
|
|
|
addInput(Port::create<PJ301MPort>(Vec(48, 276), Port::INPUT, module, VCF::RES_INPUT)); |
|
|
|
|
|
addInput(Port::create<PJ301MPort>(Vec(85, 276), Port::INPUT, module, VCF::DRIVE_INPUT)); |
|
|
|
|
|
addInput(Port::create<PJ301MPort>(Vec(10, 320), Port::INPUT, module, VCF::IN_INPUT)); |
|
|
|
|
|
|
|
|
|
|
|
addOutput(Port::create<PJ301MPort>(Vec(48, 320), Port::OUTPUT, module, VCF::LPF_OUTPUT)); |
|
|
|
|
|
addOutput(Port::create<PJ301MPort>(Vec(85, 320), Port::OUTPUT, module, VCF::HPF_OUTPUT)); |
|
|
|
|
|
|
|
|
setPanel(SVG::load(assetPlugin(plugin, "res/VCF.svg"))); |
|
|
|
|
|
|
|
|
|
|
|
addChild(Widget::create<ScrewSilver>(Vec(15, 0))); |
|
|
|
|
|
addChild(Widget::create<ScrewSilver>(Vec(box.size.x-30, 0))); |
|
|
|
|
|
addChild(Widget::create<ScrewSilver>(Vec(15, 365))); |
|
|
|
|
|
addChild(Widget::create<ScrewSilver>(Vec(box.size.x-30, 365))); |
|
|
|
|
|
|
|
|
|
|
|
addParam(ParamWidget::create<RoundHugeBlackKnob>(Vec(33, 61), module, VCF::FREQ_PARAM, 0.0f, 1.0f, 0.5f)); |
|
|
|
|
|
addParam(ParamWidget::create<RoundLargeBlackKnob>(Vec(12, 143), module, VCF::FINE_PARAM, 0.0f, 1.0f, 0.5f)); |
|
|
|
|
|
addParam(ParamWidget::create<RoundLargeBlackKnob>(Vec(71, 143), module, VCF::RES_PARAM, 0.0f, 1.0f, 0.0f)); |
|
|
|
|
|
addParam(ParamWidget::create<RoundLargeBlackKnob>(Vec(12, 208), module, VCF::FREQ_CV_PARAM, -1.0f, 1.0f, 0.0f)); |
|
|
|
|
|
addParam(ParamWidget::create<RoundLargeBlackKnob>(Vec(71, 208), module, VCF::DRIVE_PARAM, 0.0f, 1.0f, 0.0f)); |
|
|
|
|
|
|
|
|
|
|
|
addInput(Port::create<PJ301MPort>(Vec(10, 276), Port::INPUT, module, VCF::FREQ_INPUT)); |
|
|
|
|
|
addInput(Port::create<PJ301MPort>(Vec(48, 276), Port::INPUT, module, VCF::RES_INPUT)); |
|
|
|
|
|
addInput(Port::create<PJ301MPort>(Vec(85, 276), Port::INPUT, module, VCF::DRIVE_INPUT)); |
|
|
|
|
|
addInput(Port::create<PJ301MPort>(Vec(10, 320), Port::INPUT, module, VCF::IN_INPUT)); |
|
|
|
|
|
|
|
|
|
|
|
addOutput(Port::create<PJ301MPort>(Vec(48, 320), Port::OUTPUT, module, VCF::LPF_OUTPUT)); |
|
|
|
|
|
addOutput(Port::create<PJ301MPort>(Vec(85, 320), Port::OUTPUT, module, VCF::HPF_OUTPUT)); |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|