@@ -0,0 +1,13 @@ | |||||
# kissfft | |||||
Copyright (c) 2003-2010 Mark Borgerding | |||||
All rights reserved. | |||||
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: | |||||
* Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. | |||||
* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. | |||||
* Neither the author nor the names of any contributors may be used to endorse or promote products derived from this software without specific prior written permission. | |||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
@@ -0,0 +1,7 @@ | |||||
Copyright (c) 2016 Andrew Belt | |||||
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: | |||||
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. | |||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
@@ -0,0 +1,4 @@ | |||||
SOURCES = $(wildcard src/*.cpp) kissfft/kiss_fft.c | |||||
include ../../Makefile-plugin.inc |
@@ -0,0 +1,5 @@ | |||||
# Fundamental | |||||
The Fundamental plugin pack gives you a basic foundation to create simple synthesizers, route and analyze signals, complement other more complicated modules, and build some not-so-simple patches using brute force (lots of modules). | |||||
They are also a great reference for creating your own plugins in C++. | |||||
@@ -0,0 +1,128 @@ | |||||
#include "Fundamental.hpp" | |||||
struct ADSR : Module { | |||||
enum ParamIds { | |||||
ATTACK_PARAM, | |||||
DECAY_PARAM, | |||||
SUSTAIN_PARAM, | |||||
RELEASE_PARAM, | |||||
NUM_PARAMS | |||||
}; | |||||
enum InputIds { | |||||
ATTACK_INPUT, | |||||
DECAY_INPUT, | |||||
SUSTAIN_INPUT, | |||||
RELEASE_INPUT, | |||||
GATE_INPUT, | |||||
TRIG_INPUT, | |||||
NUM_INPUTS | |||||
}; | |||||
enum OutputIds { | |||||
ENVELOPE_OUTPUT, | |||||
NUM_OUTPUTS | |||||
}; | |||||
bool decaying = false; | |||||
float env = 0.0; | |||||
SchmittTrigger trigger; | |||||
float lights[4] = {}; | |||||
ADSR(); | |||||
void step(); | |||||
}; | |||||
ADSR::ADSR() { | |||||
params.resize(NUM_PARAMS); | |||||
inputs.resize(NUM_INPUTS); | |||||
outputs.resize(NUM_OUTPUTS); | |||||
trigger.setThresholds(0.0, 1.0); | |||||
} | |||||
void ADSR::step() { | |||||
float attack = clampf(params[ATTACK_INPUT] + getf(inputs[ATTACK_INPUT]) / 10.0, 0.0, 1.0); | |||||
float decay = clampf(params[DECAY_PARAM] + getf(inputs[DECAY_INPUT]) / 10.0, 0.0, 1.0); | |||||
float sustain = clampf(params[SUSTAIN_PARAM] + getf(inputs[SUSTAIN_INPUT]) / 10.0, 0.0, 1.0); | |||||
float release = clampf(params[RELEASE_PARAM] + getf(inputs[RELEASE_PARAM]) / 10.0, 0.0, 1.0); | |||||
// Lights | |||||
lights[0] = 2.0*attack - 1.0; | |||||
lights[1] = 2.0*decay - 1.0; | |||||
lights[2] = 2.0*sustain - 1.0; | |||||
lights[3] = 2.0*release - 1.0; | |||||
// Gate and trigger | |||||
bool gated = getf(inputs[GATE_INPUT]) >= 1.0; | |||||
if (trigger.process(getf(inputs[TRIG_INPUT]))) | |||||
decaying = false; | |||||
const float base = 20000.0; | |||||
const float maxTime = 10.0; | |||||
if (gated) { | |||||
if (decaying) { | |||||
// Decay | |||||
env += powf(base, 1 - decay) / maxTime * (sustain - env) / gSampleRate; | |||||
} | |||||
else { | |||||
// Attack | |||||
// Skip ahead if attack is all the way down (infinitely fast) | |||||
if (attack < 1e-4) { | |||||
env = 1.0; | |||||
} | |||||
else { | |||||
env += powf(base, 1 - attack) / maxTime * (1.001 - env) / gSampleRate; | |||||
} | |||||
if (env >= 1.0) { | |||||
env = 1.0; | |||||
decaying = true; | |||||
} | |||||
} | |||||
} | |||||
else { | |||||
// Release | |||||
env += powf(base, 1 - release) / maxTime * (0.0 - env) / gSampleRate; | |||||
decaying = false; | |||||
} | |||||
setf(outputs[ENVELOPE_OUTPUT], 10.0 * env); | |||||
} | |||||
ADSRWidget::ADSRWidget() { | |||||
ADSR *module = new ADSR(); | |||||
setModule(module); | |||||
box.size = Vec(15*8, 380); | |||||
{ | |||||
Panel *panel = new LightPanel(); | |||||
panel->box.size = box.size; | |||||
panel->backgroundImage = Image::load("plugins/Fundamental/res/ADSR.png"); | |||||
addChild(panel); | |||||
} | |||||
addChild(createScrew<ScrewSilver>(Vec(15, 0))); | |||||
addChild(createScrew<ScrewSilver>(Vec(box.size.x-30, 0))); | |||||
addChild(createScrew<ScrewSilver>(Vec(15, 365))); | |||||
addChild(createScrew<ScrewSilver>(Vec(box.size.x-30, 365))); | |||||
addParam(createParam<Davies1900hBlackKnob>(Vec(62, 57), module, ADSR::ATTACK_PARAM, 0.0, 1.0, 0.5)); | |||||
addParam(createParam<Davies1900hBlackKnob>(Vec(62, 124), module, ADSR::DECAY_PARAM, 0.0, 1.0, 0.5)); | |||||
addParam(createParam<Davies1900hBlackKnob>(Vec(62, 191), module, ADSR::SUSTAIN_PARAM, 0.0, 1.0, 0.5)); | |||||
addParam(createParam<Davies1900hBlackKnob>(Vec(62, 257), module, ADSR::RELEASE_PARAM, 0.0, 1.0, 0.5)); | |||||
addInput(createInput<PJ301MPort>(Vec(9, 63), module, ADSR::ATTACK_INPUT)); | |||||
addInput(createInput<PJ301MPort>(Vec(9, 129), module, ADSR::DECAY_INPUT)); | |||||
addInput(createInput<PJ301MPort>(Vec(9, 196), module, ADSR::SUSTAIN_INPUT)); | |||||
addInput(createInput<PJ301MPort>(Vec(9, 263), module, ADSR::RELEASE_INPUT)); | |||||
addInput(createInput<PJ301MPort>(Vec(9, 320), module, ADSR::GATE_INPUT)); | |||||
addInput(createInput<PJ301MPort>(Vec(48, 320), module, ADSR::TRIG_INPUT)); | |||||
addOutput(createOutput<PJ301MPort>(Vec(87, 320), module, ADSR::ENVELOPE_OUTPUT)); | |||||
addChild(createValueLight<SmallLight<GreenRedPolarityLight>>(Vec(94, 41), &module->lights[0])); | |||||
addChild(createValueLight<SmallLight<GreenRedPolarityLight>>(Vec(94, 108), &module->lights[1])); | |||||
addChild(createValueLight<SmallLight<GreenRedPolarityLight>>(Vec(94, 175), &module->lights[2])); | |||||
addChild(createValueLight<SmallLight<GreenRedPolarityLight>>(Vec(94, 241), &module->lights[3])); | |||||
} |
@@ -0,0 +1,110 @@ | |||||
#include "Fundamental.hpp" | |||||
#define HISTORY_SIZE (1<<21) | |||||
struct Delay : Module { | |||||
enum ParamIds { | |||||
TIME_PARAM, | |||||
FEEDBACK_PARAM, | |||||
COLOR_PARAM, | |||||
MIX_PARAM, | |||||
NUM_PARAMS | |||||
}; | |||||
enum InputIds { | |||||
TIME_INPUT, | |||||
FEEDBACK_INPUT, | |||||
COLOR_INPUT, | |||||
MIX_INPUT, | |||||
IN_INPUT, | |||||
NUM_INPUTS | |||||
}; | |||||
enum OutputIds { | |||||
OUT_OUTPUT, | |||||
NUM_OUTPUTS | |||||
}; | |||||
DoubleRingBuffer<float, HISTORY_SIZE> historyBuffer; | |||||
DoubleRingBuffer<float, 16> outBuffer; | |||||
SampleRateConverter<1> src; | |||||
float lastIndex = 0.0; | |||||
Delay(); | |||||
void step(); | |||||
}; | |||||
Delay::Delay() { | |||||
params.resize(NUM_PARAMS); | |||||
inputs.resize(NUM_INPUTS); | |||||
outputs.resize(NUM_OUTPUTS); | |||||
} | |||||
void Delay::step() { | |||||
// Compute delay time | |||||
float delay = 1e-3 * powf(10.0 / 1e-3, clampf(params[TIME_PARAM] + getf(inputs[TIME_INPUT]) / 10.0, 0.0, 1.0)); | |||||
float index = delay * gSampleRate; | |||||
// lastIndex = crossf(lastIndex, index, 0.001); | |||||
// Read the history | |||||
int consume = (int)(historyBuffer.size() - index); | |||||
// printf("wanted: %f\tactual: %d\tdiff: %d\tratio: %f\n", index, historyBuffer.size(), consume, index / historyBuffer.size()); | |||||
if (outBuffer.empty()) { | |||||
if (consume > 0) { | |||||
int inFrames = consume; | |||||
int outFrames = outBuffer.capacity(); | |||||
// printf("\t%d\t%d\n", inFrames, outFrames); | |||||
src.setRatioSmooth(index / historyBuffer.size()); | |||||
src.process((const Frame<1>*)historyBuffer.startData(), &inFrames, (Frame<1>*)outBuffer.endData(), &outFrames); | |||||
historyBuffer.startIncr(inFrames); | |||||
outBuffer.endIncr(outFrames); | |||||
// printf("\t%d\t%d\n", inFrames, outFrames); | |||||
// if (historyBuffer.size() >= index) | |||||
// outBuffer.push(historyBuffer.shift()); | |||||
} | |||||
} | |||||
float out = 0.0; | |||||
if (!outBuffer.empty()) { | |||||
out = outBuffer.shift(); | |||||
} | |||||
// Write the history | |||||
float in = getf(inputs[IN_INPUT]); | |||||
historyBuffer.push(in + out * clampf(params[FEEDBACK_PARAM] + getf(inputs[FEEDBACK_INPUT]) / 10.0, 0.0, 1.0)); | |||||
out = crossf(in, out, clampf(params[MIX_PARAM] + getf(inputs[MIX_INPUT]) / 10.0, 0.0, 1.0)); | |||||
setf(outputs[OUT_OUTPUT], out); | |||||
} | |||||
DelayWidget::DelayWidget() { | |||||
Delay *module = new Delay(); | |||||
setModule(module); | |||||
box.size = Vec(15*8, 380); | |||||
{ | |||||
Panel *panel = new LightPanel(); | |||||
panel->box.size = box.size; | |||||
panel->backgroundImage = Image::load("plugins/Fundamental/res/Delay.png"); | |||||
addChild(panel); | |||||
} | |||||
addChild(createScrew<ScrewSilver>(Vec(15, 0))); | |||||
addChild(createScrew<ScrewSilver>(Vec(box.size.x-30, 0))); | |||||
addChild(createScrew<ScrewSilver>(Vec(15, 365))); | |||||
addChild(createScrew<ScrewSilver>(Vec(box.size.x-30, 365))); | |||||
addParam(createParam<Davies1900hBlackKnob>(Vec(67, 57), module, Delay::TIME_PARAM, 0.0, 1.0, 0.5)); | |||||
addParam(createParam<Davies1900hBlackKnob>(Vec(67, 123), module, Delay::FEEDBACK_PARAM, 0.0, 1.0, 0.5)); | |||||
addParam(createParam<Davies1900hBlackKnob>(Vec(67, 190), module, Delay::COLOR_PARAM, -1.0, 1.0, 0.0)); | |||||
addParam(createParam<Davies1900hBlackKnob>(Vec(67, 257), module, Delay::MIX_PARAM, 0.0, 1.0, 0.5)); | |||||
addInput(createInput<PJ301MPort>(Vec(14, 63), module, Delay::TIME_INPUT)); | |||||
addInput(createInput<PJ301MPort>(Vec(14, 129), module, Delay::FEEDBACK_INPUT)); | |||||
addInput(createInput<PJ301MPort>(Vec(14, 196), module, Delay::COLOR_INPUT)); | |||||
addInput(createInput<PJ301MPort>(Vec(14, 263), module, Delay::MIX_INPUT)); | |||||
addInput(createInput<PJ301MPort>(Vec(14, 320), module, Delay::IN_INPUT)); | |||||
addOutput(createOutput<PJ301MPort>(Vec(73, 320), module, Delay::OUT_OUTPUT)); | |||||
} |
@@ -0,0 +1,49 @@ | |||||
#include "rack.hpp" | |||||
using namespace rack; | |||||
extern float sawTable[2048]; | |||||
extern float triTable[2048]; | |||||
//////////////////// | |||||
// module widgets | |||||
//////////////////// | |||||
struct VCOWidget : ModuleWidget { | |||||
VCOWidget(); | |||||
}; | |||||
struct VCFWidget : ModuleWidget { | |||||
VCFWidget(); | |||||
}; | |||||
struct VCAWidget : ModuleWidget { | |||||
VCAWidget(); | |||||
}; | |||||
struct DelayWidget : ModuleWidget { | |||||
DelayWidget(); | |||||
}; | |||||
struct ADSRWidget : ModuleWidget { | |||||
ADSRWidget(); | |||||
}; | |||||
struct VCMixerWidget : ModuleWidget { | |||||
VCMixerWidget(); | |||||
}; | |||||
// struct MultWidget : ModuleWidget { | |||||
// MultWidget(); | |||||
// }; | |||||
struct ScopeWidget : ModuleWidget { | |||||
ScopeWidget(); | |||||
}; | |||||
struct SEQ3Widget : ModuleWidget { | |||||
SEQ3Widget(); | |||||
}; |
@@ -0,0 +1,182 @@ | |||||
#include "Fundamental.hpp" | |||||
struct SEQ3 : Module { | |||||
enum ParamIds { | |||||
CLOCK_PARAM, | |||||
RUN_PARAM, | |||||
RESET_PARAM, | |||||
STEPS_PARAM, | |||||
ROW1_PARAM, | |||||
ROW2_PARAM = ROW1_PARAM + 8, | |||||
ROW3_PARAM = ROW2_PARAM + 8, | |||||
GATE_PARAM = ROW3_PARAM + 8, | |||||
NUM_PARAMS = GATE_PARAM + 8 | |||||
}; | |||||
enum InputIds { | |||||
CLOCK_INPUT, | |||||
EXT_CLOCK_INPUT, | |||||
RESET_INPUT, | |||||
STEPS_INPUT, | |||||
NUM_INPUTS | |||||
}; | |||||
enum OutputIds { | |||||
GATES_OUTPUT, | |||||
ROW1_OUTPUT, | |||||
ROW2_OUTPUT, | |||||
ROW3_OUTPUT, | |||||
GATE_OUTPUT, | |||||
NUM_OUTPUTS = GATE_OUTPUT + 8 | |||||
}; | |||||
bool running = true; | |||||
SchmittTrigger clockTrigger; // for external clock | |||||
SchmittTrigger runningTrigger; | |||||
SchmittTrigger resetTrigger; | |||||
float phase = 0.0; | |||||
int index = 0; | |||||
SchmittTrigger gateTriggers[8]; | |||||
bool gateState[8] = {}; | |||||
float stepLights[8] = {}; | |||||
// Lights | |||||
float runningLight = 0.0; | |||||
float resetLight = 0.0; | |||||
float gatesLight = 0.0; | |||||
float rowLights[3] = {}; | |||||
float gateLights[8] = {}; | |||||
SEQ3(); | |||||
void step(); | |||||
}; | |||||
SEQ3::SEQ3() { | |||||
params.resize(NUM_PARAMS); | |||||
inputs.resize(NUM_INPUTS); | |||||
outputs.resize(NUM_OUTPUTS); | |||||
} | |||||
void SEQ3::step() { | |||||
const float lightLambda = 0.075; | |||||
// Run | |||||
if (runningTrigger.process(params[RUN_PARAM])) { | |||||
running = !running; | |||||
} | |||||
runningLight = running ? 1.0 : 0.0; | |||||
bool nextStep = false; | |||||
if (running) { | |||||
if (inputs[EXT_CLOCK_INPUT]) { | |||||
// External clock | |||||
if (clockTrigger.process(*inputs[EXT_CLOCK_INPUT])) { | |||||
phase = 0.0; | |||||
nextStep = true; | |||||
} | |||||
} | |||||
else { | |||||
// Internal clock | |||||
float clockTime = powf(1/2.0, params[CLOCK_PARAM] + getf(inputs[CLOCK_INPUT])); | |||||
phase += clockTime / gSampleRate; | |||||
if (phase >= 1.0) { | |||||
phase -= 1.0; | |||||
nextStep = true; | |||||
} | |||||
} | |||||
} | |||||
// Reset | |||||
if (resetTrigger.process(params[RESET_PARAM] + getf(inputs[RESET_INPUT]))) { | |||||
phase = 0.0; | |||||
index = 999; | |||||
nextStep = true; | |||||
resetLight = 1.0; | |||||
} | |||||
if (nextStep) { | |||||
// Advance step | |||||
int numSteps = clampi(roundf(params[STEPS_PARAM] + getf(inputs[STEPS_INPUT])), 1, 8); | |||||
index += 1; | |||||
if (index >= numSteps) { | |||||
index = 0; | |||||
} | |||||
stepLights[index] = 1.0; | |||||
} | |||||
resetLight -= resetLight / lightLambda / gSampleRate; | |||||
// Gate buttons | |||||
for (int i = 0; i < 8; i++) { | |||||
if (gateTriggers[i].process(params[GATE_PARAM + i])) { | |||||
gateState[i] = !gateState[i]; | |||||
} | |||||
float gate = (i == index && gateState[i] >= 1.0) ? 10.0 : 0.0; | |||||
setf(outputs[GATE_OUTPUT + i], gate); | |||||
stepLights[i] -= stepLights[i] / lightLambda / gSampleRate; | |||||
gateLights[i] = (gateState[i] >= 1.0) ? 1.0 - stepLights[i] : stepLights[i]; | |||||
} | |||||
// Rows | |||||
float row1 = params[ROW1_PARAM + index]; | |||||
float row2 = params[ROW2_PARAM + index]; | |||||
float row3 = params[ROW3_PARAM + index]; | |||||
float gates = (gateState[index] >= 1.0) ? 10.0 : 0.0; | |||||
setf(outputs[ROW1_OUTPUT], row1); | |||||
setf(outputs[ROW2_OUTPUT], row2); | |||||
setf(outputs[ROW3_OUTPUT], row3); | |||||
setf(outputs[GATES_OUTPUT], gates); | |||||
gatesLight = (gateState[index] >= 1.0) ? 1.0 : 0.0; | |||||
rowLights[0] = row1; | |||||
rowLights[1] = row2; | |||||
rowLights[2] = row3; | |||||
} | |||||
SEQ3Widget::SEQ3Widget() { | |||||
SEQ3 *module = new SEQ3(); | |||||
setModule(module); | |||||
box.size = Vec(15*22, 380); | |||||
{ | |||||
Panel *panel = new LightPanel(); | |||||
panel->box.size = box.size; | |||||
panel->backgroundImage = Image::load("plugins/Fundamental/res/SEQ3.png"); | |||||
addChild(panel); | |||||
} | |||||
addChild(createScrew<ScrewSilver>(Vec(15, 0))); | |||||
addChild(createScrew<ScrewSilver>(Vec(box.size.x-30, 0))); | |||||
addChild(createScrew<ScrewSilver>(Vec(15, 365))); | |||||
addChild(createScrew<ScrewSilver>(Vec(box.size.x-30, 365))); | |||||
addParam(createParam<Davies1900hSmallBlackKnob>(Vec(17, 56), module, SEQ3::CLOCK_PARAM, -6.0, 2.0, -2.0)); | |||||
addParam(createParam<LEDButton>(Vec(60, 61-1), module, SEQ3::RUN_PARAM, 0.0, 1.0, 0.0)); | |||||
addChild(createValueLight<SmallLight<GreenValueLight>>(Vec(60+5, 61+4), &module->runningLight)); | |||||
addParam(createParam<LEDButton>(Vec(98, 61-1), module, SEQ3::RESET_PARAM, 0.0, 1.0, 0.0)); | |||||
addChild(createValueLight<SmallLight<GreenValueLight>>(Vec(98+5, 61+4), &module->resetLight)); | |||||
addParam(createParam<Davies1900hSmallBlackSnapKnob>(Vec(132, 56), module, SEQ3::STEPS_PARAM, 1.0, 8.0, 8.0)); | |||||
addChild(createValueLight<SmallLight<GreenValueLight>>(Vec(180.5, 65), &module->gatesLight)); | |||||
addChild(createValueLight<SmallLight<GreenValueLight>>(Vec(218.5, 65), &module->rowLights[0])); | |||||
addChild(createValueLight<SmallLight<GreenValueLight>>(Vec(257, 65), &module->rowLights[1])); | |||||
addChild(createValueLight<SmallLight<GreenValueLight>>(Vec(295.5, 65), &module->rowLights[2])); | |||||
static const float portX[8] = {19, 57, 96, 134, 173, 211, 250, 288}; | |||||
addInput(createInput<PJ301MPort>(Vec(portX[0]-1, 99-1), module, SEQ3::CLOCK_INPUT)); | |||||
addInput(createInput<PJ301MPort>(Vec(portX[1]-1, 99-1), module, SEQ3::EXT_CLOCK_INPUT)); | |||||
addInput(createInput<PJ301MPort>(Vec(portX[2]-1, 99-1), module, SEQ3::RESET_INPUT)); | |||||
addInput(createInput<PJ301MPort>(Vec(portX[3]-1, 99-1), module, SEQ3::STEPS_INPUT)); | |||||
addOutput(createOutput<PJ301MPort>(Vec(portX[4]-1, 99-1), module, SEQ3::GATES_OUTPUT)); | |||||
addOutput(createOutput<PJ301MPort>(Vec(portX[5]-1, 99-1), module, SEQ3::ROW1_OUTPUT)); | |||||
addOutput(createOutput<PJ301MPort>(Vec(portX[6]-1, 99-1), module, SEQ3::ROW2_OUTPUT)); | |||||
addOutput(createOutput<PJ301MPort>(Vec(portX[7]-1, 99-1), module, SEQ3::ROW3_OUTPUT)); | |||||
for (int i = 0; i < 8; i++) { | |||||
addParam(createParam<Davies1900hSmallBlackKnob>(Vec(portX[i]-2, 157), module, SEQ3::ROW1_PARAM + i, 0.0, 6.0, 0.0)); | |||||
addParam(createParam<Davies1900hSmallBlackKnob>(Vec(portX[i]-2, 198), module, SEQ3::ROW2_PARAM + i, 0.0, 6.0, 0.0)); | |||||
addParam(createParam<Davies1900hSmallBlackKnob>(Vec(portX[i]-2, 240), module, SEQ3::ROW3_PARAM + i, 0.0, 6.0, 0.0)); | |||||
addParam(createParam<LEDButton>(Vec(portX[i]+2, 278-1), module, SEQ3::GATE_PARAM + i, 0.0, 1.0, 0.0)); | |||||
addChild(createValueLight<SmallLight<GreenValueLight>>(Vec(portX[i]+7, 278+4), &module->gateLights[i])); | |||||
addOutput(createOutput<PJ301MPort>(Vec(portX[i]-1, 308-1), module, SEQ3::GATE_OUTPUT + i)); | |||||
} | |||||
} |
@@ -0,0 +1,297 @@ | |||||
#include <string.h> | |||||
#include "Fundamental.hpp" | |||||
#define BUFFER_SIZE 512 | |||||
struct Scope : Module { | |||||
enum ParamIds { | |||||
X_SCALE_PARAM, | |||||
X_POS_PARAM, | |||||
Y_SCALE_PARAM, | |||||
Y_POS_PARAM, | |||||
TIME_PARAM, | |||||
MODE_PARAM, | |||||
TRIG_PARAM, | |||||
EXT_PARAM, | |||||
NUM_PARAMS | |||||
}; | |||||
enum InputIds { | |||||
X_INPUT, | |||||
Y_INPUT, | |||||
TRIG_INPUT, | |||||
NUM_INPUTS | |||||
}; | |||||
enum OutputIds { | |||||
NUM_OUTPUTS | |||||
}; | |||||
float bufferX[BUFFER_SIZE] = {}; | |||||
float bufferY[BUFFER_SIZE] = {}; | |||||
int bufferIndex = 0; | |||||
float frameIndex = 0; | |||||
SchmittTrigger sumTrigger; | |||||
SchmittTrigger extTrigger; | |||||
bool sum = false; | |||||
bool ext = false; | |||||
float lights[4] = {}; | |||||
SchmittTrigger resetTrigger; | |||||
Scope(); | |||||
void step(); | |||||
}; | |||||
Scope::Scope() { | |||||
params.resize(NUM_PARAMS); | |||||
inputs.resize(NUM_INPUTS); | |||||
outputs.resize(NUM_OUTPUTS); | |||||
} | |||||
void Scope::step() { | |||||
// Modes | |||||
if (sumTrigger.process(params[MODE_PARAM])) { | |||||
sum = !sum; | |||||
} | |||||
lights[0] = sum ? 0.0 : 1.0; | |||||
lights[1] = sum ? 1.0 : 0.0; | |||||
if (extTrigger.process(params[EXT_PARAM])) { | |||||
ext = !ext; | |||||
} | |||||
lights[2] = ext ? 0.0 : 1.0; | |||||
lights[3] = ext ? 1.0 : 0.0; | |||||
// Compute time | |||||
float deltaTime = powf(2.0, params[TIME_PARAM]); | |||||
int frameCount = (int)ceilf(deltaTime * gSampleRate); | |||||
// Add frame to buffer | |||||
if (bufferIndex < BUFFER_SIZE) { | |||||
if (++frameIndex > frameCount) { | |||||
frameIndex = 0; | |||||
bufferX[bufferIndex] = getf(inputs[X_INPUT]); | |||||
bufferY[bufferIndex] = getf(inputs[Y_INPUT]); | |||||
bufferIndex++; | |||||
} | |||||
} | |||||
// Are we waiting on the next trigger? | |||||
if (bufferIndex >= BUFFER_SIZE) { | |||||
// Trigger immediately if external but nothing plugged in | |||||
if (ext && !inputs[TRIG_INPUT]) { | |||||
bufferIndex = 0; frameIndex = 0; return; | |||||
} | |||||
// Reset the Schmitt trigger so we don't trigger immediately if the input is high | |||||
if (frameIndex == 0) { | |||||
resetTrigger.reset(); | |||||
} | |||||
frameIndex++; | |||||
// Must go below 0.1V to trigger | |||||
resetTrigger.setThresholds(params[TRIG_PARAM] - 0.1, params[TRIG_PARAM]); | |||||
float gate = ext ? getf(inputs[TRIG_INPUT]) : getf(inputs[X_INPUT]); | |||||
// Reset if triggered | |||||
float holdTime = 0.1; | |||||
if (resetTrigger.process(gate) || (frameIndex >= gSampleRate * holdTime)) { | |||||
bufferIndex = 0; frameIndex = 0; return; | |||||
} | |||||
// Reset if we've waited too long | |||||
if (frameIndex >= gSampleRate * holdTime) { | |||||
bufferIndex = 0; frameIndex = 0; return; | |||||
} | |||||
} | |||||
} | |||||
struct ScopeDisplay : TransparentWidget { | |||||
Scope *module; | |||||
int frame = 0; | |||||
std::shared_ptr<Font> font; | |||||
struct Stats { | |||||
float vrms, vpp, vmin, vmax; | |||||
void calculate(float *values) { | |||||
vrms = 0.0; | |||||
vmax = -INFINITY; | |||||
vmin = INFINITY; | |||||
for (int i = 0; i < BUFFER_SIZE; i++) { | |||||
float v = values[i]; | |||||
vrms += v*v; | |||||
vmax = fmaxf(vmax, v); | |||||
vmin = fminf(vmin, v); | |||||
} | |||||
vrms = sqrtf(vrms / BUFFER_SIZE); | |||||
vpp = vmax - vmin; | |||||
} | |||||
}; | |||||
Stats statsX, statsY; | |||||
ScopeDisplay() { | |||||
font = Font::load("plugins/Fundamental/res/DejaVuSansMono.ttf"); | |||||
} | |||||
void drawWaveform(NVGcontext *vg, float *values, float gain, float offset) { | |||||
nvgSave(vg); | |||||
Rect b = Rect(Vec(0, 15), box.size.minus(Vec(0, 15*2))); | |||||
nvgScissor(vg, b.pos.x, b.pos.y, b.size.x, b.size.y); | |||||
nvgBeginPath(vg); | |||||
// Draw maximum display left to right | |||||
for (int i = 0; i < BUFFER_SIZE; i++) { | |||||
float value = values[i] * gain + offset; | |||||
Vec p = Vec(b.pos.x + i * b.size.x / (BUFFER_SIZE-1), b.pos.y + b.size.y * (1 - value) / 2); | |||||
if (i == 0) | |||||
nvgMoveTo(vg, p.x, p.y); | |||||
else | |||||
nvgLineTo(vg, p.x, p.y); | |||||
} | |||||
nvgLineCap(vg, NVG_ROUND); | |||||
nvgMiterLimit(vg, 2.0); | |||||
nvgStrokeWidth(vg, 1.75); | |||||
nvgGlobalCompositeOperation(vg, NVG_LIGHTER); | |||||
nvgStroke(vg); | |||||
nvgResetScissor(vg); | |||||
nvgRestore(vg); | |||||
} | |||||
void drawTrig(NVGcontext *vg, float value, float gain, float offset) { | |||||
Rect b = Rect(Vec(0, 15), box.size.minus(Vec(0, 15*2))); | |||||
nvgScissor(vg, b.pos.x, b.pos.y, b.size.x, b.size.y); | |||||
value = value * gain + offset; | |||||
Vec p = Vec(box.size.x, b.pos.y + b.size.y * (1 - value) / 2); | |||||
// Draw line | |||||
nvgStrokeColor(vg, nvgRGBA(0xff, 0xff, 0xff, 0x10)); | |||||
{ | |||||
nvgBeginPath(vg); | |||||
nvgMoveTo(vg, p.x - 13, p.y); | |||||
nvgLineTo(vg, 0, p.y); | |||||
nvgClosePath(vg); | |||||
} | |||||
nvgStroke(vg); | |||||
// Draw indicator | |||||
nvgFillColor(vg, nvgRGBA(0xff, 0xff, 0xff, 0x60)); | |||||
{ | |||||
nvgBeginPath(vg); | |||||
nvgMoveTo(vg, p.x - 2, p.y - 4); | |||||
nvgLineTo(vg, p.x - 9, p.y - 4); | |||||
nvgLineTo(vg, p.x - 13, p.y); | |||||
nvgLineTo(vg, p.x - 9, p.y + 4); | |||||
nvgLineTo(vg, p.x - 2, p.y + 4); | |||||
nvgClosePath(vg); | |||||
} | |||||
nvgFill(vg); | |||||
nvgFontSize(vg, 8); | |||||
nvgFontFaceId(vg, font->handle); | |||||
nvgFillColor(vg, nvgRGBA(0x1e, 0x28, 0x2b, 0xff)); | |||||
nvgText(vg, p.x - 8, p.y + 3, "T", NULL); | |||||
nvgResetScissor(vg); | |||||
} | |||||
void drawStats(NVGcontext *vg, Vec pos, const char *title, Stats *stats) { | |||||
nvgFontSize(vg, 10); | |||||
nvgFontFaceId(vg, font->handle); | |||||
nvgTextLetterSpacing(vg, -2); | |||||
nvgFillColor(vg, nvgRGBA(0xff, 0xff, 0xff, 0xff)); | |||||
nvgText(vg, pos.x + 5, pos.y + 10, title, NULL); | |||||
nvgFillColor(vg, nvgRGBA(0xff, 0xff, 0xff, 0x80)); | |||||
char text[128]; | |||||
snprintf(text, sizeof(text), "rms %5.2f pp %5.2f max % 6.2f min % 6.2f", stats->vrms, stats->vpp, stats->vmax, stats->vmin); | |||||
nvgText(vg, pos.x + 17, pos.y + 10, text, NULL); | |||||
} | |||||
void draw(NVGcontext *vg) { | |||||
float gainX = powf(2.0, roundf(module->params[Scope::X_SCALE_PARAM])) / 12.0; | |||||
float gainY = powf(2.0, roundf(module->params[Scope::Y_SCALE_PARAM])) / 12.0; | |||||
float posX = module->params[Scope::X_POS_PARAM]; | |||||
float posY = module->params[Scope::Y_POS_PARAM]; | |||||
// Draw waveforms | |||||
if (module->sum) { | |||||
float sumBuffer[BUFFER_SIZE]; | |||||
for (int i = 0; i < BUFFER_SIZE; i++) { | |||||
sumBuffer[i] = module->bufferX[i] + module->bufferY[i]; | |||||
} | |||||
// X + Y | |||||
nvgStrokeColor(vg, nvgRGBA(0x9f, 0xe4, 0x36, 0xc0)); | |||||
drawWaveform(vg, sumBuffer, gainX, posX); | |||||
} | |||||
else { | |||||
// Y | |||||
if (module->inputs[Scope::Y_INPUT]) { | |||||
nvgStrokeColor(vg, nvgRGBA(0xe1, 0x02, 0x78, 0xc0)); | |||||
drawWaveform(vg, module->bufferY, gainY, posY); | |||||
} | |||||
// X | |||||
if (module->inputs[Scope::X_INPUT]) { | |||||
nvgStrokeColor(vg, nvgRGBA(0x28, 0xb0, 0xf3, 0xc0)); | |||||
drawWaveform(vg, module->bufferX, gainX, posX); | |||||
} | |||||
} | |||||
drawTrig(vg, module->params[Scope::TRIG_PARAM], gainX, posX); | |||||
// Calculate and draw stats | |||||
if (++frame >= 4) { | |||||
frame = 0; | |||||
statsX.calculate(module->bufferX); | |||||
statsY.calculate(module->bufferY); | |||||
} | |||||
drawStats(vg, Vec(0, 0), "X", &statsX); | |||||
drawStats(vg, Vec(0, box.size.y - 15), "Y", &statsY); | |||||
} | |||||
}; | |||||
ScopeWidget::ScopeWidget() { | |||||
Scope *module = new Scope(); | |||||
setModule(module); | |||||
box.size = Vec(15*13, 380); | |||||
{ | |||||
Panel *panel = new LightPanel(); | |||||
panel->box.size = box.size; | |||||
panel->backgroundImage = Image::load("plugins/Fundamental/res/Scope.png"); | |||||
addChild(panel); | |||||
} | |||||
addChild(createScrew<ScrewSilver>(Vec(15, 0))); | |||||
addChild(createScrew<ScrewSilver>(Vec(box.size.x-30, 0))); | |||||
addChild(createScrew<ScrewSilver>(Vec(15, 365))); | |||||
addChild(createScrew<ScrewSilver>(Vec(box.size.x-30, 365))); | |||||
{ | |||||
ScopeDisplay *display = new ScopeDisplay(); | |||||
display->module = module; | |||||
display->box.pos = Vec(0, 44); | |||||
display->box.size = Vec(box.size.x, 140); | |||||
addChild(display); | |||||
} | |||||
addParam(createParam<Davies1900hSmallBlackSnapKnob>(Vec(15, 209), module, Scope::X_SCALE_PARAM, -1.0, 9.0, 1.0)); | |||||
addParam(createParam<Davies1900hSmallBlackKnob>(Vec(15, 263), module, Scope::X_POS_PARAM, -1.0, 1.0, 0.0)); | |||||
addParam(createParam<Davies1900hSmallBlackSnapKnob>(Vec(61, 209), module, Scope::Y_SCALE_PARAM, -1.0, 9.0, 1.0)); | |||||
addParam(createParam<Davies1900hSmallBlackKnob>(Vec(61, 263), module, Scope::Y_POS_PARAM, -1.0, 1.0, 0.0)); | |||||
addParam(createParam<Davies1900hSmallBlackKnob>(Vec(107, 209), module, Scope::TIME_PARAM, -6.0, -16.0, -14.0)); | |||||
addParam(createParam<CKD6>(Vec(106, 262), module, Scope::MODE_PARAM, 0.0, 1.0, 0.0)); | |||||
addParam(createParam<Davies1900hSmallBlackKnob>(Vec(153, 209), module, Scope::TRIG_PARAM, -12.0, 12.0, 0.0)); | |||||
addParam(createParam<CKD6>(Vec(152, 262), module, Scope::EXT_PARAM, 0.0, 1.0, 0.0)); | |||||
addInput(createInput<PJ301MPort>(Vec(17, 319), module, Scope::X_INPUT)); | |||||
addInput(createInput<PJ301MPort>(Vec(63, 319), module, Scope::Y_INPUT)); | |||||
addInput(createInput<PJ301MPort>(Vec(154, 319), module, Scope::TRIG_INPUT)); | |||||
addChild(createValueLight<TinyLight<GreenValueLight>>(Vec(104, 251), &module->lights[0])); | |||||
addChild(createValueLight<TinyLight<GreenValueLight>>(Vec(104, 296), &module->lights[1])); | |||||
addChild(createValueLight<TinyLight<GreenValueLight>>(Vec(150, 251), &module->lights[2])); | |||||
addChild(createValueLight<TinyLight<GreenValueLight>>(Vec(150, 296), &module->lights[3])); | |||||
} |
@@ -0,0 +1,81 @@ | |||||
#include "Fundamental.hpp" | |||||
struct VCA : Module { | |||||
enum ParamIds { | |||||
LEVEL1_PARAM, | |||||
LEVEL2_PARAM, | |||||
NUM_PARAMS | |||||
}; | |||||
enum InputIds { | |||||
EXP1_INPUT, | |||||
LIN1_INPUT, | |||||
IN1_INPUT, | |||||
EXP2_INPUT, | |||||
LIN2_INPUT, | |||||
IN2_INPUT, | |||||
NUM_INPUTS | |||||
}; | |||||
enum OutputIds { | |||||
OUT1_OUTPUT, | |||||
OUT2_OUTPUT, | |||||
NUM_OUTPUTS | |||||
}; | |||||
VCA(); | |||||
void step(); | |||||
}; | |||||
VCA::VCA() { | |||||
params.resize(NUM_PARAMS); | |||||
inputs.resize(NUM_INPUTS); | |||||
outputs.resize(NUM_OUTPUTS); | |||||
} | |||||
static void stepChannel(const float *in, float level, const float *lin, const float *exp, float *out) { | |||||
float v = getf(in); | |||||
if (lin) | |||||
v *= clampf(*lin / 10.0, 0.0, 1.0); | |||||
const float expBase = 50.0; | |||||
if (exp) | |||||
v *= rescalef(powf(expBase, clampf(*exp / 10.0, 0.0, 1.0)), 1.0, expBase, 0.0, 1.0); | |||||
setf(out, v); | |||||
} | |||||
void VCA::step() { | |||||
stepChannel(inputs[IN1_INPUT], params[LEVEL1_PARAM], inputs[LIN1_INPUT], inputs[EXP1_INPUT], outputs[OUT1_OUTPUT]); | |||||
stepChannel(inputs[IN2_INPUT], params[LEVEL2_PARAM], inputs[LIN2_INPUT], inputs[EXP2_INPUT], outputs[OUT2_OUTPUT]); | |||||
} | |||||
VCAWidget::VCAWidget() { | |||||
VCA *module = new VCA(); | |||||
setModule(module); | |||||
box.size = Vec(15*6, 380); | |||||
{ | |||||
Panel *panel = new LightPanel(); | |||||
panel->box.size = box.size; | |||||
panel->backgroundImage = Image::load("plugins/Fundamental/res/VCA.png"); | |||||
addChild(panel); | |||||
} | |||||
addChild(createScrew<ScrewSilver>(Vec(15, 0))); | |||||
addChild(createScrew<ScrewSilver>(Vec(box.size.x-30, 0))); | |||||
addChild(createScrew<ScrewSilver>(Vec(15, 365))); | |||||
addChild(createScrew<ScrewSilver>(Vec(box.size.x-30, 365))); | |||||
addParam(createParam<Davies1900hBlackKnob>(Vec(27, 57), module, VCA::LEVEL1_PARAM, 0.0, 1.0, 0.5)); | |||||
addParam(createParam<Davies1900hBlackKnob>(Vec(27, 222), module, VCA::LEVEL2_PARAM, 0.0, 1.0, 0.5)); | |||||
addInput(createInput<PJ301MPort>(Vec(11, 113), module, VCA::EXP1_INPUT)); | |||||
addInput(createInput<PJ301MPort>(Vec(54, 113), module, VCA::LIN1_INPUT)); | |||||
addInput(createInput<PJ301MPort>(Vec(11, 156), module, VCA::IN1_INPUT)); | |||||
addInput(createInput<PJ301MPort>(Vec(11, 276), module, VCA::EXP2_INPUT)); | |||||
addInput(createInput<PJ301MPort>(Vec(54, 276), module, VCA::LIN2_INPUT)); | |||||
addInput(createInput<PJ301MPort>(Vec(11, 320), module, VCA::IN2_INPUT)); | |||||
addOutput(createOutput<PJ301MPort>(Vec(54, 156), module, VCA::OUT1_OUTPUT)); | |||||
addOutput(createOutput<PJ301MPort>(Vec(54, 320), module, VCA::OUT2_OUTPUT)); | |||||
} |
@@ -0,0 +1,172 @@ | |||||
/* | |||||
The filter DSP code has been derived from | |||||
Miller Puckette's code hosted at | |||||
https://github.com/ddiakopoulos/MoogLadders/blob/master/src/RKSimulationModel.h | |||||
which is licensed for use under the following terms (MIT license): | |||||
Copyright (c) 2015, Miller Puckette. All rights reserved. | |||||
Redistribution and use in source and binary forms, with or without | |||||
modification, are permitted provided that the following conditions are met: | |||||
* Redistributions of source code must retain the above copyright notice, this | |||||
list of conditions and the following disclaimer. | |||||
* Redistributions in binary form must reproduce the above copyright notice, | |||||
this list of conditions and the following disclaimer in the documentation | |||||
and/or other materials provided with the distribution. | |||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | |||||
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |||||
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE | |||||
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE | |||||
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | |||||
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR | |||||
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER | |||||
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, | |||||
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |||||
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |||||
*/ | |||||
#include "Fundamental.hpp" | |||||
// The clipping function of a transistor pair is approximately tanh(x) | |||||
// TODO: Put this in a lookup table. 5th order approx doesn't seem to cut it | |||||
inline float clip(float x) { | |||||
return tanhf(x); | |||||
} | |||||
struct LadderFilter { | |||||
float cutoff = 1000.0; | |||||
float resonance = 1.0; | |||||
float state[4] = {}; | |||||
void calculateDerivatives(float input, float *dstate, const float *state) { | |||||
float cutoff2Pi = 2*M_PI * cutoff; | |||||
float satstate0 = clip(state[0]); | |||||
float satstate1 = clip(state[1]); | |||||
float satstate2 = clip(state[2]); | |||||
dstate[0] = cutoff2Pi * (clip(input - resonance * state[3]) - satstate0); | |||||
dstate[1] = cutoff2Pi * (satstate0 - satstate1); | |||||
dstate[2] = cutoff2Pi * (satstate1 - satstate2); | |||||
dstate[3] = cutoff2Pi * (satstate2 - clip(state[3])); | |||||
} | |||||
void process(float input, float dt) { | |||||
float deriv1[4], deriv2[4], deriv3[4], deriv4[4], tempState[4]; | |||||
calculateDerivatives(input, deriv1, state); | |||||
for (int i = 0; i < 4; i++) | |||||
tempState[i] = state[i] + 0.5 * dt * deriv1[i]; | |||||
calculateDerivatives(input, deriv2, tempState); | |||||
for (int i = 0; i < 4; i++) | |||||
tempState[i] = state[i] + 0.5 * dt * deriv2[i]; | |||||
calculateDerivatives(input, deriv3, tempState); | |||||
for (int i = 0; i < 4; i++) | |||||
tempState[i] = state[i] + dt * deriv3[i]; | |||||
calculateDerivatives(input, deriv4, tempState); | |||||
for (int i = 0; i < 4; i++) | |||||
state[i] += (1.0 / 6.0) * dt * (deriv1[i] + 2.0 * deriv2[i] + 2.0 * deriv3[i] + deriv4[i]); | |||||
} | |||||
}; | |||||
struct VCF : Module { | |||||
enum ParamIds { | |||||
FREQ_PARAM, | |||||
FINE_PARAM, | |||||
RES_PARAM, | |||||
FREQ_CV_PARAM, | |||||
DRIVE_PARAM, | |||||
NUM_PARAMS | |||||
}; | |||||
enum InputIds { | |||||
FREQ_INPUT, | |||||
RES_INPUT, | |||||
DRIVE_INPUT, | |||||
IN_INPUT, | |||||
NUM_INPUTS | |||||
}; | |||||
enum OutputIds { | |||||
LPF_OUTPUT, | |||||
HPF_OUTPUT, | |||||
NUM_OUTPUTS | |||||
}; | |||||
LadderFilter filter; | |||||
VCF(); | |||||
void step(); | |||||
}; | |||||
VCF::VCF() { | |||||
params.resize(NUM_PARAMS); | |||||
inputs.resize(NUM_INPUTS); | |||||
outputs.resize(NUM_OUTPUTS); | |||||
} | |||||
void VCF::step() { | |||||
float input = getf(inputs[IN_INPUT]) / 5.0; | |||||
float drive = powf(100.0, params[DRIVE_PARAM]); | |||||
input *= drive; | |||||
// Add -60dB noise to bootstrap self-oscillation | |||||
input += 1.0e-6 * (2.0*randomf() - 1.0); | |||||
// Set resonance | |||||
float res = params[RES_PARAM] + getf(inputs[RES_INPUT]) / 5.0; | |||||
res = 5.5 * clampf(res, 0.0, 1.0); | |||||
filter.resonance = res; | |||||
// Set cutoff frequency | |||||
float cutoffExp = params[FREQ_PARAM] + params[FREQ_CV_PARAM] * getf(inputs[FREQ_INPUT]) / 5.0; | |||||
cutoffExp = clampf(cutoffExp, 0.0, 1.0); | |||||
filter.cutoff = 200.0 * powf(8400.0/200.0, cutoffExp); | |||||
// Push a sample to the state filter | |||||
filter.process(input, 1.0/gSampleRate); | |||||
// Extract outputs | |||||
setf(outputs[LPF_OUTPUT], 5.0 * filter.state[3]); | |||||
setf(outputs[HPF_OUTPUT], 5.0 * (input - filter.state[3])); | |||||
} | |||||
VCFWidget::VCFWidget() { | |||||
VCF *module = new VCF(); | |||||
setModule(module); | |||||
box.size = Vec(15*8, 380); | |||||
{ | |||||
Panel *panel = new LightPanel(); | |||||
panel->box.size = box.size; | |||||
panel->backgroundImage = Image::load("plugins/Fundamental/res/VCF.png"); | |||||
addChild(panel); | |||||
} | |||||
addChild(createScrew<ScrewSilver>(Vec(15, 0))); | |||||
addChild(createScrew<ScrewSilver>(Vec(box.size.x-30, 0))); | |||||
addChild(createScrew<ScrewSilver>(Vec(15, 365))); | |||||
addChild(createScrew<ScrewSilver>(Vec(box.size.x-30, 365))); | |||||
addParam(createParam<Davies1900hLargeBlackKnob>(Vec(33, 61), module, VCF::FREQ_PARAM, 0.0, 1.0, 0.5)); | |||||
addParam(createParam<Davies1900hBlackKnob>(Vec(12, 143), module, VCF::FINE_PARAM, 0.0, 1.0, 0.5)); | |||||
addParam(createParam<Davies1900hBlackKnob>(Vec(71, 143), module, VCF::RES_PARAM, 0.0, 1.0, 0.0)); | |||||
addParam(createParam<Davies1900hBlackKnob>(Vec(12, 208), module, VCF::FREQ_CV_PARAM, -1.0, 1.0, 0.0)); | |||||
addParam(createParam<Davies1900hBlackKnob>(Vec(71, 208), module, VCF::DRIVE_PARAM, 0.0, 1.0, 0.0)); | |||||
addInput(createInput<PJ301MPort>(Vec(10, 276), module, VCF::FREQ_INPUT)); | |||||
addInput(createInput<PJ301MPort>(Vec(48, 276), module, VCF::RES_INPUT)); | |||||
addInput(createInput<PJ301MPort>(Vec(85, 276), module, VCF::DRIVE_INPUT)); | |||||
addInput(createInput<PJ301MPort>(Vec(10, 320), module, VCF::IN_INPUT)); | |||||
addOutput(createOutput<PJ301MPort>(Vec(48, 320), module, VCF::LPF_OUTPUT)); | |||||
addOutput(createOutput<PJ301MPort>(Vec(85, 320), module, VCF::HPF_OUTPUT)); | |||||
} |
@@ -0,0 +1,89 @@ | |||||
#include "Fundamental.hpp" | |||||
struct VCMixer : Module { | |||||
enum ParamIds { | |||||
MIX_PARAM, | |||||
CH1_PARAM, | |||||
CH2_PARAM, | |||||
CH3_PARAM, | |||||
NUM_PARAMS | |||||
}; | |||||
enum InputIds { | |||||
MIX_CV_INPUT, | |||||
CH1_INPUT, | |||||
CH1_CV_INPUT, | |||||
CH2_INPUT, | |||||
CH2_CV_INPUT, | |||||
CH3_INPUT, | |||||
CH3_CV_INPUT, | |||||
NUM_INPUTS | |||||
}; | |||||
enum OutputIds { | |||||
MIX_OUTPUT, | |||||
CH1_OUTPUT, | |||||
CH2_OUTPUT, | |||||
CH3_OUTPUT, | |||||
NUM_OUTPUTS | |||||
}; | |||||
VCMixer(); | |||||
void step(); | |||||
}; | |||||
VCMixer::VCMixer() { | |||||
params.resize(NUM_PARAMS); | |||||
inputs.resize(NUM_INPUTS); | |||||
outputs.resize(NUM_OUTPUTS); | |||||
} | |||||
void VCMixer::step() { | |||||
float ch1 = getf(inputs[CH1_INPUT]) * params[CH1_PARAM] * clampf(getf(inputs[CH1_CV_INPUT], 10.0) / 10.0, 0.0, 1.0); | |||||
float ch2 = getf(inputs[CH2_INPUT]) * params[CH2_PARAM] * clampf(getf(inputs[CH2_CV_INPUT], 10.0) / 10.0, 0.0, 1.0); | |||||
float ch3 = getf(inputs[CH3_INPUT]) * params[CH3_PARAM] * clampf(getf(inputs[CH3_CV_INPUT], 10.0) / 10.0, 0.0, 1.0); | |||||
float mix = (ch1 + ch2 + ch3) * params[MIX_PARAM] * getf(inputs[MIX_CV_INPUT], 10.0) / 10.0; | |||||
setf(outputs[CH1_OUTPUT], ch1); | |||||
setf(outputs[CH2_OUTPUT], ch2); | |||||
setf(outputs[CH3_OUTPUT], ch3); | |||||
setf(outputs[MIX_OUTPUT], mix); | |||||
} | |||||
VCMixerWidget::VCMixerWidget() { | |||||
VCMixer *module = new VCMixer(); | |||||
setModule(module); | |||||
box.size = Vec(15*10, 380); | |||||
{ | |||||
Panel *panel = new LightPanel(); | |||||
panel->box.size = box.size; | |||||
panel->backgroundImage = Image::load("plugins/Fundamental/res/VCMixer.png"); | |||||
addChild(panel); | |||||
} | |||||
addChild(createScrew<ScrewSilver>(Vec(15, 0))); | |||||
addChild(createScrew<ScrewSilver>(Vec(box.size.x-30, 0))); | |||||
addChild(createScrew<ScrewSilver>(Vec(15, 365))); | |||||
addChild(createScrew<ScrewSilver>(Vec(box.size.x-30, 365))); | |||||
addParam(createParam<Davies1900hLargeBlackKnob>(Vec(48, 55), module, VCMixer::MIX_PARAM, 0.0, 1.0, 0.5)); | |||||
addParam(createParam<Davies1900hBlackKnob>(Vec(57, 139), module, VCMixer::CH1_PARAM, 0.0, 1.0, 0.5)); | |||||
addParam(createParam<Davies1900hBlackKnob>(Vec(57, 219), module, VCMixer::CH2_PARAM, 0.0, 1.0, 0.5)); | |||||
addParam(createParam<Davies1900hBlackKnob>(Vec(57, 300), module, VCMixer::CH3_PARAM, 0.0, 1.0, 0.5)); | |||||
addInput(createInput<PJ301MPort>(Vec(16, 69), module, VCMixer::MIX_CV_INPUT)); | |||||
addInput(createInput<PJ301MPort>(Vec(22, 129), module, VCMixer::CH1_INPUT)); | |||||
addInput(createInput<PJ301MPort>(Vec(22, 160), module, VCMixer::CH1_CV_INPUT)); | |||||
addInput(createInput<PJ301MPort>(Vec(22, 209), module, VCMixer::CH2_INPUT)); | |||||
addInput(createInput<PJ301MPort>(Vec(22, 241), module, VCMixer::CH2_CV_INPUT)); | |||||
addInput(createInput<PJ301MPort>(Vec(22, 290), module, VCMixer::CH3_INPUT)); | |||||
addInput(createInput<PJ301MPort>(Vec(22, 322), module, VCMixer::CH3_CV_INPUT)); | |||||
addOutput(createOutput<PJ301MPort>(Vec(110, 69), module, VCMixer::MIX_OUTPUT)); | |||||
addOutput(createOutput<PJ301MPort>(Vec(110, 145), module, VCMixer::CH1_OUTPUT)); | |||||
addOutput(createOutput<PJ301MPort>(Vec(110, 225), module, VCMixer::CH2_OUTPUT)); | |||||
addOutput(createOutput<PJ301MPort>(Vec(110, 306), module, VCMixer::CH3_OUTPUT)); | |||||
} |
@@ -0,0 +1,222 @@ | |||||
#include "Fundamental.hpp" | |||||
#include "dsp.hpp" | |||||
#define OVERSAMPLE 16 | |||||
#define QUALITY 16 | |||||
struct VCO : Module { | |||||
enum ParamIds { | |||||
MODE_PARAM, | |||||
SYNC_PARAM, | |||||
FREQ_PARAM, | |||||
FINE_PARAM, | |||||
FM_PARAM, | |||||
PW_PARAM, | |||||
PW_CV_PARAM, | |||||
NUM_PARAMS | |||||
}; | |||||
enum InputIds { | |||||
PITCH_INPUT, | |||||
FM_INPUT, | |||||
PW_INPUT, | |||||
SYNC_INPUT, | |||||
NUM_INPUTS | |||||
}; | |||||
enum OutputIds { | |||||
SIN_OUTPUT, | |||||
TRI_OUTPUT, | |||||
SAW_OUTPUT, | |||||
SQR_OUTPUT, | |||||
NUM_OUTPUTS | |||||
}; | |||||
float lastSync = 0.0; | |||||
float phase = 0.0; | |||||
bool syncDirection = false; | |||||
Decimator<OVERSAMPLE, QUALITY> sinDecimator; | |||||
Decimator<OVERSAMPLE, QUALITY> triDecimator; | |||||
Decimator<OVERSAMPLE, QUALITY> sawDecimator; | |||||
Decimator<OVERSAMPLE, QUALITY> sqrDecimator; | |||||
RCFilter sqrFilter; | |||||
float lights[1] = {}; | |||||
// For analog detuning effect | |||||
float pitchSlew = 0.0; | |||||
int pitchSlewIndex = 0; | |||||
VCO(); | |||||
void step(); | |||||
}; | |||||
VCO::VCO() { | |||||
params.resize(NUM_PARAMS); | |||||
inputs.resize(NUM_INPUTS); | |||||
outputs.resize(NUM_OUTPUTS); | |||||
} | |||||
void VCO::step() { | |||||
bool analog = params[MODE_PARAM] < 1.0; | |||||
// TODO Soft sync features | |||||
bool soft = params[SYNC_PARAM] < 1.0; | |||||
if (analog) { | |||||
// Adjust pitch slew | |||||
if (++pitchSlewIndex > 32) { | |||||
const float pitchSlewTau = 100.0; // Time constant for leaky integrator in seconds | |||||
pitchSlew += (randomNormal() - pitchSlew / pitchSlewTau) / gSampleRate; | |||||
pitchSlewIndex = 0; | |||||
} | |||||
} | |||||
// Compute frequency | |||||
float pitch = params[FREQ_PARAM]; | |||||
if (analog) { | |||||
// Apply pitch slew | |||||
const float pitchSlewAmount = 3.0; | |||||
pitch += pitchSlew * pitchSlewAmount; | |||||
} | |||||
else { | |||||
// Quantize coarse knob if digital mode | |||||
pitch = roundf(pitch); | |||||
} | |||||
pitch += 12.0 * getf(inputs[PITCH_INPUT]); | |||||
pitch += 3.0 * quadraticBipolar(params[FINE_PARAM]); | |||||
if (inputs[FM_INPUT]) { | |||||
pitch += quadraticBipolar(params[FM_PARAM]) * 12.0 * *inputs[FM_INPUT]; | |||||
} | |||||
float freq = 261.626 * powf(2.0, pitch / 12.0); | |||||
// Pulse width | |||||
const float pwMin = 0.01; | |||||
float pw = clampf(params[PW_PARAM] + params[PW_CV_PARAM] * getf(inputs[PW_INPUT]) / 10.0, pwMin, 1.0 - pwMin); | |||||
// Advance phase | |||||
float deltaPhase = clampf(freq / gSampleRate, 1e-6, 0.5); | |||||
// Detect sync | |||||
int syncIndex = -1; // Index in the oversample loop where sync occurs [0, OVERSAMPLE) | |||||
float syncCrossing = 0.0; // Offset that sync occurs [0.0, 1.0) | |||||
if (inputs[SYNC_INPUT]) { | |||||
float sync = *inputs[SYNC_INPUT] - 0.01; | |||||
if (sync > 0.0 && lastSync <= 0.0) { | |||||
float deltaSync = sync - lastSync; | |||||
syncCrossing = 1.0 - sync / deltaSync; | |||||
syncCrossing *= OVERSAMPLE; | |||||
syncIndex = (int)syncCrossing; | |||||
syncCrossing -= syncIndex; | |||||
} | |||||
lastSync = sync; | |||||
} | |||||
if (syncDirection) | |||||
deltaPhase *= -1.0; | |||||
// Oversample loop | |||||
float sin[OVERSAMPLE]; | |||||
float tri[OVERSAMPLE]; | |||||
float saw[OVERSAMPLE]; | |||||
float sqr[OVERSAMPLE]; | |||||
sqrFilter.setCutoff(40.0 / gSampleRate); | |||||
for (int i = 0; i < OVERSAMPLE; i++) { | |||||
if (syncIndex == i) { | |||||
if (soft) { | |||||
syncDirection = !syncDirection; | |||||
deltaPhase *= -1.0; | |||||
} | |||||
else { | |||||
// phase = syncCrossing * deltaPhase / OVERSAMPLE; | |||||
phase = 0.0; | |||||
} | |||||
} | |||||
if (outputs[SIN_OUTPUT]) { | |||||
if (analog) | |||||
// Quadratic approximation of sine, slightly richer harmonics | |||||
sin[i] = 1.08 * ((phase < 0.25) ? (-1.0 + (4*phase)*(4*phase)) : (phase < 0.75) ? (1.0 - (4*phase-2)*(4*phase-2)) : (-1.0 + (4*phase-4)*(4*phase-4))); | |||||
else | |||||
sin[i] = -cosf(2*M_PI * phase); | |||||
} | |||||
if (outputs[TRI_OUTPUT]) { | |||||
if (analog) | |||||
tri[i] = 1.35 * interpf(triTable, phase * 2047.0); | |||||
else | |||||
tri[i] = (phase < 0.5) ? (-1.0 + 4.0*phase) : (1.0 - 4.0*(phase - 0.5)); | |||||
} | |||||
if (outputs[SAW_OUTPUT]) { | |||||
if (analog) | |||||
saw[i] = 1.5 * interpf(sawTable, phase * 2047.0); | |||||
else | |||||
saw[i] = -1.0 + 2.0*phase; | |||||
} | |||||
if (outputs[SQR_OUTPUT]) { | |||||
sqr[i] = (phase < 1.0 - pw) ? -1.0 : 1.0; | |||||
if (analog) { | |||||
// Simply filter here | |||||
sqrFilter.process(sqr[i]); | |||||
sqr[i] = sqrFilter.highpass() / 2.0; | |||||
} | |||||
} | |||||
// Advance phase | |||||
phase += deltaPhase / OVERSAMPLE; | |||||
phase = eucmodf(phase, 1.0); | |||||
} | |||||
// Set output | |||||
if (outputs[SIN_OUTPUT]) | |||||
*outputs[SIN_OUTPUT] = 5.0 * sinDecimator.process(sin); | |||||
if (outputs[TRI_OUTPUT]) | |||||
*outputs[TRI_OUTPUT] = 5.0 * triDecimator.process(tri); | |||||
if (outputs[SAW_OUTPUT]) | |||||
*outputs[SAW_OUTPUT] = 5.0 * sawDecimator.process(saw); | |||||
if (outputs[SQR_OUTPUT]) | |||||
*outputs[SQR_OUTPUT] = 5.0 * sqrDecimator.process(sqr); | |||||
lights[0] = rescalef(pitch, -48.0, 48.0, -1.0, 1.0); | |||||
} | |||||
VCOWidget::VCOWidget() { | |||||
VCO *module = new VCO(); | |||||
setModule(module); | |||||
box.size = Vec(15*10, 380); | |||||
{ | |||||
Panel *panel = new LightPanel(); | |||||
panel->box.size = box.size; | |||||
panel->backgroundImage = Image::load("plugins/Fundamental/res/VCO.png"); | |||||
addChild(panel); | |||||
} | |||||
addChild(createScrew<ScrewSilver>(Vec(15, 0))); | |||||
addChild(createScrew<ScrewSilver>(Vec(box.size.x-30, 0))); | |||||
addChild(createScrew<ScrewSilver>(Vec(15, 365))); | |||||
addChild(createScrew<ScrewSilver>(Vec(box.size.x-30, 365))); | |||||
addParam(createParam<CKSS>(Vec(15, 77), module, VCO::MODE_PARAM, 0.0, 1.0, 1.0)); | |||||
addParam(createParam<CKSS>(Vec(120, 77), module, VCO::SYNC_PARAM, 0.0, 1.0, 1.0)); | |||||
addParam(createParam<Davies1900hLargeBlackKnob>(Vec(48, 61), module, VCO::FREQ_PARAM, -54.0, 54.0, 0.0)); | |||||
addParam(createParam<Davies1900hBlackKnob>(Vec(23, 143), module, VCO::FINE_PARAM, -1.0, 1.0, 0.0)); | |||||
addParam(createParam<Davies1900hBlackKnob>(Vec(91, 143), module, VCO::PW_PARAM, 0.0, 1.0, 0.5)); | |||||
addParam(createParam<Davies1900hBlackKnob>(Vec(23, 208), module, VCO::FM_PARAM, 0.0, 1.0, 0.0)); | |||||
addParam(createParam<Davies1900hBlackKnob>(Vec(91, 208), module, VCO::PW_CV_PARAM, 0.0, 1.0, 0.0)); | |||||
addInput(createInput<PJ301MPort>(Vec(11, 276), module, VCO::PITCH_INPUT)); | |||||
addInput(createInput<PJ301MPort>(Vec(45, 276), module, VCO::FM_INPUT)); | |||||
addInput(createInput<PJ301MPort>(Vec(80, 276), module, VCO::SYNC_INPUT)); | |||||
addInput(createInput<PJ301MPort>(Vec(114, 276), module, VCO::PW_INPUT)); | |||||
addOutput(createOutput<PJ301MPort>(Vec(11, 320), module, VCO::SIN_OUTPUT)); | |||||
addOutput(createOutput<PJ301MPort>(Vec(45, 320), module, VCO::TRI_OUTPUT)); | |||||
addOutput(createOutput<PJ301MPort>(Vec(80, 320), module, VCO::SAW_OUTPUT)); | |||||
addOutput(createOutput<PJ301MPort>(Vec(114, 320), module, VCO::SQR_OUTPUT)); | |||||
addChild(createValueLight<SmallLight<GreenRedPolarityLight>>(Vec(99, 41), &module->lights[0])); | |||||
} |