@@ -33,19 +33,20 @@ struct _8vert : Module { | |||
// Get input | |||
if (inputs[IN_INPUTS + i].isConnected()) { | |||
channels = inputs[IN_INPUTS + i].getChannels(); | |||
inputs[IN_INPUTS + i].getVoltages(in); | |||
inputs[IN_INPUTS + i].readVoltages(in); | |||
} | |||
if (outputs[OUT_OUTPUTS + i].isConnected()) { | |||
// Apply gain | |||
float out[16]; | |||
float gain = params[GAIN_PARAMS + i].getValue(); | |||
for (int c = 0; c < channels; c++) | |||
for (int c = 0; c < channels; c++) { | |||
out[c] = gain * in[c]; | |||
} | |||
// Set output | |||
outputs[OUT_OUTPUTS + i].setChannels(channels); | |||
outputs[OUT_OUTPUTS + i].setVoltages(out); | |||
outputs[OUT_OUTPUTS + i].writeVoltages(out); | |||
} | |||
} | |||
} | |||
@@ -45,14 +45,14 @@ struct Mutes : Module { | |||
// Get input | |||
// Inputs are normalized to the input above it, so only set if connected | |||
if (inputs[IN_INPUT + i].isConnected()) { | |||
inputs[IN_INPUT + i].getVoltages(out); | |||
channels = inputs[IN_INPUT + i].getChannels(); | |||
inputs[IN_INPUT + i].readVoltages(out); | |||
} | |||
// Set output | |||
if (outputs[OUT_OUTPUT + i].isConnected()) { | |||
outputs[OUT_OUTPUT + i].setChannels(channels); | |||
outputs[OUT_OUTPUT + i].setVoltages(state[i] ? out : zero); | |||
outputs[OUT_OUTPUT + i].writeVoltages(state[i] ? out : zero); | |||
} | |||
// Set light | |||
@@ -34,12 +34,7 @@ struct Sum : Module { | |||
} | |||
void process(const ProcessArgs &args) override { | |||
int channels = inputs[POLY_INPUT].getChannels(); | |||
float sum = 0.f; | |||
for (int c = 0; c < channels; c++) { | |||
sum += inputs[POLY_INPUT].getVoltage(c); | |||
} | |||
float sum = inputs[POLY_INPUT].getVoltageSum(); | |||
sum *= params[LEVEL_PARAM].getValue(); | |||
outputs[MONO_OUTPUT].setVoltage(sum); | |||
@@ -36,7 +36,7 @@ struct VCA : Module { | |||
int channels = in.getChannels(); | |||
simd::float_4 v[4]; | |||
for (int c = 0; c < channels; c += 4) { | |||
v[c / 4] = simd::float_4::load(&in.voltages[c]); | |||
v[c / 4] = simd::float_4::load(in.getVoltages(c)); | |||
} | |||
// Apply knob gain | |||
@@ -56,7 +56,7 @@ struct VCA : Module { | |||
} | |||
else { | |||
for (int c = 0; c < channels; c += 4) { | |||
simd::float_4 cv = simd::float_4::load(&lin.voltages[c]) / 10.f; | |||
simd::float_4 cv = simd::float_4::load(lin.getVoltages(c)) / 10.f; | |||
cv = clamp(cv, 0.f, 1.f); | |||
v[c / 4] *= cv; | |||
} | |||
@@ -76,7 +76,7 @@ struct VCA : Module { | |||
} | |||
else { | |||
for (int c = 0; c < channels; c += 4) { | |||
simd::float_4 cv = simd::float_4::load(&exp.voltages[c]) / 10.f; | |||
simd::float_4 cv = simd::float_4::load(exp.getVoltages(c)) / 10.f; | |||
cv = clamp(cv, 0.f, 1.f); | |||
cv = rescale(pow(expBase, cv), 1.f, expBase, 0.f, 1.f); | |||
v[c / 4] *= cv; | |||
@@ -87,7 +87,7 @@ struct VCA : Module { | |||
// Set output | |||
out.setChannels(channels); | |||
for (int c = 0; c < channels; c += 4) { | |||
v[c / 4].store(&out.voltages[c]); | |||
v[c / 4].store(out.getVoltages(c)); | |||
} | |||
} | |||
@@ -34,44 +34,46 @@ struct VCMixer : Module { | |||
float mix[16] = {}; | |||
int maxChannels = 1; | |||
// Channels | |||
for (int i = 0; i < 4; i++) { | |||
// Skip channel if not patched | |||
if (!inputs[CH_INPUT + i].isConnected()) | |||
continue; | |||
int channels = 1; | |||
float in[16] = {}; | |||
int channels = inputs[CH_INPUT + i].getChannels(); | |||
maxChannels = std::max(maxChannels, channels); | |||
// Get input | |||
inputs[CH_INPUT + i].getVoltages(in); | |||
if (inputs[CH_INPUT + i].isConnected()) { | |||
channels = inputs[CH_INPUT + i].getChannels(); | |||
maxChannels = std::max(maxChannels, channels); | |||
// Apply fader gain | |||
float gain = std::pow(params[LVL_PARAM + i].getValue(), 2.f); | |||
for (int c = 0; c < channels; c++) { | |||
in[c] *= gain; | |||
} | |||
// Get input | |||
inputs[CH_INPUT + i].readVoltages(in); | |||
// Apply CV gain | |||
if (inputs[CV_INPUT + i].isConnected()) { | |||
// Apply fader gain | |||
float gain = std::pow(params[LVL_PARAM + i].getValue(), 2.f); | |||
for (int c = 0; c < channels; c++) { | |||
float cv = clamp(inputs[CV_INPUT + i].getPolyVoltage(c) / 10.f, 0.f, 1.f); | |||
in[c] *= cv; | |||
in[c] *= gain; | |||
} | |||
// Apply CV gain | |||
if (inputs[CV_INPUT + i].isConnected()) { | |||
for (int c = 0; c < channels; c++) { | |||
float cv = clamp(inputs[CV_INPUT + i].getPolyVoltage(c) / 10.f, 0.f, 1.f); | |||
in[c] *= cv; | |||
} | |||
} | |||
// Add to mix | |||
for (int c = 0; c < channels; c++) { | |||
mix[c] += in[c]; | |||
} | |||
} | |||
// Set channel output | |||
if (outputs[CH_OUTPUT + i].isConnected()) { | |||
outputs[CH_OUTPUT + i].setChannels(channels); | |||
outputs[CH_OUTPUT + i].setVoltages(in); | |||
} | |||
// Add to mix | |||
for (int c = 0; c < channels; c++) { | |||
mix[c] += in[c]; | |||
outputs[CH_OUTPUT + i].writeVoltages(in); | |||
} | |||
} | |||
// Mix output | |||
if (outputs[MIX_OUTPUT].isConnected()) { | |||
// Apply mix knob gain | |||
float gain = params[MIX_LVL_PARAM].getValue(); | |||
@@ -89,7 +91,7 @@ struct VCMixer : Module { | |||
// Set mix output | |||
outputs[MIX_OUTPUT].setChannels(maxChannels); | |||
outputs[MIX_OUTPUT].setVoltages(mix); | |||
outputs[MIX_OUTPUT].writeVoltages(mix); | |||
} | |||
} | |||
}; | |||