You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1882 lines
66KB

  1. /* Copyright (c) 2013 Julien Pommier ( pommier@modartt.com )
  2. Based on original fortran 77 code from FFTPACKv4 from NETLIB
  3. (http://www.netlib.org/fftpack), authored by Dr Paul Swarztrauber
  4. of NCAR, in 1985.
  5. As confirmed by the NCAR fftpack software curators, the following
  6. FFTPACKv5 license applies to FFTPACKv4 sources. My changes are
  7. released under the same terms.
  8. FFTPACK license:
  9. http://www.cisl.ucar.edu/css/software/fftpack5/ftpk.html
  10. Copyright (c) 2004 the University Corporation for Atmospheric
  11. Research ("UCAR"). All rights reserved. Developed by NCAR's
  12. Computational and Information Systems Laboratory, UCAR,
  13. www.cisl.ucar.edu.
  14. Redistribution and use of the Software in source and binary forms,
  15. with or without modification, is permitted provided that the
  16. following conditions are met:
  17. - Neither the names of NCAR's Computational and Information Systems
  18. Laboratory, the University Corporation for Atmospheric Research,
  19. nor the names of its sponsors or contributors may be used to
  20. endorse or promote products derived from this Software without
  21. specific prior written permission.
  22. - Redistributions of source code must retain the above copyright
  23. notices, this list of conditions, and the disclaimer below.
  24. - Redistributions in binary form must reproduce the above copyright
  25. notice, this list of conditions, and the disclaimer below in the
  26. documentation and/or other materials provided with the
  27. distribution.
  28. THIS SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  29. EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO THE WARRANTIES OF
  30. MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  31. NONINFRINGEMENT. IN NO EVENT SHALL THE CONTRIBUTORS OR COPYRIGHT
  32. HOLDERS BE LIABLE FOR ANY CLAIM, INDIRECT, INCIDENTAL, SPECIAL,
  33. EXEMPLARY, OR CONSEQUENTIAL DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  34. ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  35. CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS WITH THE
  36. SOFTWARE.
  37. PFFFT : a Pretty Fast FFT.
  38. This file is largerly based on the original FFTPACK implementation, modified in
  39. order to take advantage of SIMD instructions of modern CPUs.
  40. */
  41. /*
  42. ChangeLog:
  43. - 2011/10/02, version 1: This is the very first release of this file.
  44. */
  45. #include "pffft.h"
  46. #include <stdlib.h>
  47. #include <stdio.h>
  48. #include <math.h>
  49. #include <assert.h>
  50. /* detect compiler flavour */
  51. #if defined(_MSC_VER)
  52. # define COMPILER_MSVC
  53. #elif defined(__GNUC__)
  54. # define COMPILER_GCC
  55. #endif
  56. #if defined(COMPILER_GCC)
  57. # define ALWAYS_INLINE(return_type) inline return_type __attribute__ ((always_inline))
  58. # define NEVER_INLINE(return_type) return_type __attribute__ ((noinline))
  59. # define RESTRICT __restrict
  60. # define VLA_ARRAY_ON_STACK(type__, varname__, size__) type__ varname__[size__];
  61. #elif defined(COMPILER_MSVC)
  62. # define ALWAYS_INLINE(return_type) __forceinline return_type
  63. # define NEVER_INLINE(return_type) __declspec(noinline) return_type
  64. # define RESTRICT __restrict
  65. # define VLA_ARRAY_ON_STACK(type__, varname__, size__) type__ *varname__ = (type__*)_alloca(size__ * sizeof(type__))
  66. #endif
  67. /*
  68. vector support macros: the rest of the code is independant of
  69. SSE/Altivec/NEON -- adding support for other platforms with 4-element
  70. vectors should be limited to these macros
  71. */
  72. // define PFFFT_SIMD_DISABLE if you want to use scalar code instead of simd code
  73. //#define PFFFT_SIMD_DISABLE
  74. /*
  75. Altivec support macros
  76. */
  77. #if !defined(PFFFT_SIMD_DISABLE) && (defined(__ppc__) || defined(__ppc64__))
  78. typedef vector float v4sf;
  79. # define SIMD_SZ 4
  80. # define VZERO() ((vector float) vec_splat_u8(0))
  81. # define VMUL(a,b) vec_madd(a,b, VZERO())
  82. # define VADD(a,b) vec_add(a,b)
  83. # define VMADD(a,b,c) vec_madd(a,b,c)
  84. # define VSUB(a,b) vec_sub(a,b)
  85. inline v4sf ld_ps1(const float *p) { v4sf v=vec_lde(0,p); return vec_splat(vec_perm(v, v, vec_lvsl(0, p)), 0); }
  86. # define LD_PS1(p) ld_ps1(&p)
  87. # define INTERLEAVE2(in1, in2, out1, out2) { v4sf tmp__ = vec_mergeh(in1, in2); out2 = vec_mergel(in1, in2); out1 = tmp__; }
  88. # define UNINTERLEAVE2(in1, in2, out1, out2) { \
  89. vector unsigned char vperm1 = (vector unsigned char)(0,1,2,3,8,9,10,11,16,17,18,19,24,25,26,27); \
  90. vector unsigned char vperm2 = (vector unsigned char)(4,5,6,7,12,13,14,15,20,21,22,23,28,29,30,31); \
  91. v4sf tmp__ = vec_perm(in1, in2, vperm1); out2 = vec_perm(in1, in2, vperm2); out1 = tmp__; \
  92. }
  93. # define VTRANSPOSE4(x0,x1,x2,x3) { \
  94. v4sf y0 = vec_mergeh(x0, x2); \
  95. v4sf y1 = vec_mergel(x0, x2); \
  96. v4sf y2 = vec_mergeh(x1, x3); \
  97. v4sf y3 = vec_mergel(x1, x3); \
  98. x0 = vec_mergeh(y0, y2); \
  99. x1 = vec_mergel(y0, y2); \
  100. x2 = vec_mergeh(y1, y3); \
  101. x3 = vec_mergel(y1, y3); \
  102. }
  103. # define VSWAPHL(a,b) vec_perm(a,b, (vector unsigned char)(16,17,18,19,20,21,22,23,8,9,10,11,12,13,14,15))
  104. # define VALIGNED(ptr) ((((long)(ptr)) & 0xF) == 0)
  105. /*
  106. SSE1 support macros
  107. */
  108. #elif !defined(PFFFT_SIMD_DISABLE) && (defined(__x86_64__) || defined(_M_X64) || defined(i386) || defined(_M_IX86))
  109. #include <xmmintrin.h>
  110. typedef __m128 v4sf;
  111. # define SIMD_SZ 4 // 4 floats by simd vector -- this is pretty much hardcoded in the preprocess/finalize functions anyway so you will have to work if you want to enable AVX with its 256-bit vectors.
  112. # define VZERO() _mm_setzero_ps()
  113. # define VMUL(a,b) _mm_mul_ps(a,b)
  114. # define VADD(a,b) _mm_add_ps(a,b)
  115. # define VMADD(a,b,c) _mm_add_ps(_mm_mul_ps(a,b), c)
  116. # define VSUB(a,b) _mm_sub_ps(a,b)
  117. # define LD_PS1(p) _mm_set1_ps(p)
  118. # define INTERLEAVE2(in1, in2, out1, out2) { v4sf tmp__ = _mm_unpacklo_ps(in1, in2); out2 = _mm_unpackhi_ps(in1, in2); out1 = tmp__; }
  119. # define UNINTERLEAVE2(in1, in2, out1, out2) { v4sf tmp__ = _mm_shuffle_ps(in1, in2, _MM_SHUFFLE(2,0,2,0)); out2 = _mm_shuffle_ps(in1, in2, _MM_SHUFFLE(3,1,3,1)); out1 = tmp__; }
  120. # define VTRANSPOSE4(x0,x1,x2,x3) _MM_TRANSPOSE4_PS(x0,x1,x2,x3)
  121. # define VSWAPHL(a,b) _mm_shuffle_ps(b, a, _MM_SHUFFLE(3,2,1,0))
  122. # define VALIGNED(ptr) ((((long)(ptr)) & 0xF) == 0)
  123. /*
  124. ARM NEON support macros
  125. */
  126. #elif !defined(PFFFT_SIMD_DISABLE) && (defined(__arm__) || defined(__aarch64__) || defined(__arm64__))
  127. # include <arm_neon.h>
  128. typedef float32x4_t v4sf;
  129. # define SIMD_SZ 4
  130. # define VZERO() vdupq_n_f32(0)
  131. # define VMUL(a,b) vmulq_f32(a,b)
  132. # define VADD(a,b) vaddq_f32(a,b)
  133. # define VMADD(a,b,c) vmlaq_f32(c,a,b)
  134. # define VSUB(a,b) vsubq_f32(a,b)
  135. # define LD_PS1(p) vld1q_dup_f32(&(p))
  136. # define INTERLEAVE2(in1, in2, out1, out2) { float32x4x2_t tmp__ = vzipq_f32(in1,in2); out1=tmp__.val[0]; out2=tmp__.val[1]; }
  137. # define UNINTERLEAVE2(in1, in2, out1, out2) { float32x4x2_t tmp__ = vuzpq_f32(in1,in2); out1=tmp__.val[0]; out2=tmp__.val[1]; }
  138. # define VTRANSPOSE4(x0,x1,x2,x3) { \
  139. float32x4x2_t t0_ = vzipq_f32(x0, x2); \
  140. float32x4x2_t t1_ = vzipq_f32(x1, x3); \
  141. float32x4x2_t u0_ = vzipq_f32(t0_.val[0], t1_.val[0]); \
  142. float32x4x2_t u1_ = vzipq_f32(t0_.val[1], t1_.val[1]); \
  143. x0 = u0_.val[0]; x1 = u0_.val[1]; x2 = u1_.val[0]; x3 = u1_.val[1]; \
  144. }
  145. // marginally faster version
  146. //# define VTRANSPOSE4(x0,x1,x2,x3) { asm("vtrn.32 %q0, %q1;\n vtrn.32 %q2,%q3\n vswp %f0,%e2\n vswp %f1,%e3" : "+w"(x0), "+w"(x1), "+w"(x2), "+w"(x3)::); }
  147. # define VSWAPHL(a,b) vcombine_f32(vget_low_f32(b), vget_high_f32(a))
  148. # define VALIGNED(ptr) ((((long)(ptr)) & 0x3) == 0)
  149. #else
  150. # if !defined(PFFFT_SIMD_DISABLE)
  151. # warning "building with simd disabled !\n";
  152. # define PFFFT_SIMD_DISABLE // fallback to scalar code
  153. # endif
  154. #endif
  155. // fallback mode for situations where SSE/Altivec are not available, use scalar mode instead
  156. #ifdef PFFFT_SIMD_DISABLE
  157. typedef float v4sf;
  158. # define SIMD_SZ 1
  159. # define VZERO() 0.f
  160. # define VMUL(a,b) ((a)*(b))
  161. # define VADD(a,b) ((a)+(b))
  162. # define VMADD(a,b,c) ((a)*(b)+(c))
  163. # define VSUB(a,b) ((a)-(b))
  164. # define LD_PS1(p) (p)
  165. # define VALIGNED(ptr) ((((long)(ptr)) & 0x3) == 0)
  166. #endif
  167. // shortcuts for complex multiplcations
  168. #define VCPLXMUL(ar,ai,br,bi) { v4sf tmp; tmp=VMUL(ar,bi); ar=VMUL(ar,br); ar=VSUB(ar,VMUL(ai,bi)); ai=VMUL(ai,br); ai=VADD(ai,tmp); }
  169. #define VCPLXMULCONJ(ar,ai,br,bi) { v4sf tmp; tmp=VMUL(ar,bi); ar=VMUL(ar,br); ar=VADD(ar,VMUL(ai,bi)); ai=VMUL(ai,br); ai=VSUB(ai,tmp); }
  170. #ifndef SVMUL
  171. // multiply a scalar with a vector
  172. #define SVMUL(f,v) VMUL(LD_PS1(f),v)
  173. #endif
  174. #if !defined(PFFFT_SIMD_DISABLE)
  175. typedef union v4sf_union {
  176. v4sf v;
  177. float f[4];
  178. } v4sf_union;
  179. #include <string.h>
  180. #define assertv4(v,f0,f1,f2,f3) assert(v.f[0] == (f0) && v.f[1] == (f1) && v.f[2] == (f2) && v.f[3] == (f3))
  181. /* detect bugs with the vector support macros */
  182. void validate_pffft_simd() {
  183. float f[16] = { 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 };
  184. v4sf_union a0, a1, a2, a3, t, u;
  185. memcpy(a0.f, f, 4*sizeof(float));
  186. memcpy(a1.f, f+4, 4*sizeof(float));
  187. memcpy(a2.f, f+8, 4*sizeof(float));
  188. memcpy(a3.f, f+12, 4*sizeof(float));
  189. t = a0; u = a1; t.v = VZERO();
  190. printf("VZERO=[%2g %2g %2g %2g]\n", t.f[0], t.f[1], t.f[2], t.f[3]); assertv4(t, 0, 0, 0, 0);
  191. t.v = VADD(a1.v, a2.v);
  192. printf("VADD(4:7,8:11)=[%2g %2g %2g %2g]\n", t.f[0], t.f[1], t.f[2], t.f[3]); assertv4(t, 12, 14, 16, 18);
  193. t.v = VMUL(a1.v, a2.v);
  194. printf("VMUL(4:7,8:11)=[%2g %2g %2g %2g]\n", t.f[0], t.f[1], t.f[2], t.f[3]); assertv4(t, 32, 45, 60, 77);
  195. t.v = VMADD(a1.v, a2.v,a0.v);
  196. printf("VMADD(4:7,8:11,0:3)=[%2g %2g %2g %2g]\n", t.f[0], t.f[1], t.f[2], t.f[3]); assertv4(t, 32, 46, 62, 80);
  197. INTERLEAVE2(a1.v,a2.v,t.v,u.v);
  198. printf("INTERLEAVE2(4:7,8:11)=[%2g %2g %2g %2g] [%2g %2g %2g %2g]\n", t.f[0], t.f[1], t.f[2], t.f[3], u.f[0], u.f[1], u.f[2], u.f[3]);
  199. assertv4(t, 4, 8, 5, 9); assertv4(u, 6, 10, 7, 11);
  200. UNINTERLEAVE2(a1.v,a2.v,t.v,u.v);
  201. printf("UNINTERLEAVE2(4:7,8:11)=[%2g %2g %2g %2g] [%2g %2g %2g %2g]\n", t.f[0], t.f[1], t.f[2], t.f[3], u.f[0], u.f[1], u.f[2], u.f[3]);
  202. assertv4(t, 4, 6, 8, 10); assertv4(u, 5, 7, 9, 11);
  203. t.v=LD_PS1(f[15]);
  204. printf("LD_PS1(15)=[%2g %2g %2g %2g]\n", t.f[0], t.f[1], t.f[2], t.f[3]);
  205. assertv4(t, 15, 15, 15, 15);
  206. t.v = VSWAPHL(a1.v, a2.v);
  207. printf("VSWAPHL(4:7,8:11)=[%2g %2g %2g %2g]\n", t.f[0], t.f[1], t.f[2], t.f[3]);
  208. assertv4(t, 8, 9, 6, 7);
  209. VTRANSPOSE4(a0.v, a1.v, a2.v, a3.v);
  210. printf("VTRANSPOSE4(0:3,4:7,8:11,12:15)=[%2g %2g %2g %2g] [%2g %2g %2g %2g] [%2g %2g %2g %2g] [%2g %2g %2g %2g]\n",
  211. a0.f[0], a0.f[1], a0.f[2], a0.f[3], a1.f[0], a1.f[1], a1.f[2], a1.f[3],
  212. a2.f[0], a2.f[1], a2.f[2], a2.f[3], a3.f[0], a3.f[1], a3.f[2], a3.f[3]);
  213. assertv4(a0, 0, 4, 8, 12); assertv4(a1, 1, 5, 9, 13); assertv4(a2, 2, 6, 10, 14); assertv4(a3, 3, 7, 11, 15);
  214. }
  215. #endif //!PFFFT_SIMD_DISABLE
  216. /* SSE and co like 16-bytes aligned pointers */
  217. #define MALLOC_V4SF_ALIGNMENT 64 // with a 64-byte alignment, we are even aligned on L2 cache lines...
  218. void *pffft_aligned_malloc(size_t nb_bytes) {
  219. void *p, *p0 = malloc(nb_bytes + MALLOC_V4SF_ALIGNMENT);
  220. if (!p0) return (void *) 0;
  221. p = (void *) (((size_t) p0 + MALLOC_V4SF_ALIGNMENT) & (~((size_t) (MALLOC_V4SF_ALIGNMENT-1))));
  222. *((void **) p - 1) = p0;
  223. return p;
  224. }
  225. void pffft_aligned_free(void *p) {
  226. if (p) free(*((void **) p - 1));
  227. }
  228. int pffft_simd_size() { return SIMD_SZ; }
  229. /*
  230. passf2 and passb2 has been merged here, fsign = -1 for passf2, +1 for passb2
  231. */
  232. static NEVER_INLINE(void) passf2_ps(int ido, int l1, const v4sf *cc, v4sf *ch, const float *wa1, float fsign) {
  233. int k, i;
  234. int l1ido = l1*ido;
  235. if (ido <= 2) {
  236. for (k=0; k < l1ido; k += ido, ch += ido, cc+= 2*ido) {
  237. ch[0] = VADD(cc[0], cc[ido+0]);
  238. ch[l1ido] = VSUB(cc[0], cc[ido+0]);
  239. ch[1] = VADD(cc[1], cc[ido+1]);
  240. ch[l1ido + 1] = VSUB(cc[1], cc[ido+1]);
  241. }
  242. } else {
  243. for (k=0; k < l1ido; k += ido, ch += ido, cc += 2*ido) {
  244. for (i=0; i<ido-1; i+=2) {
  245. v4sf tr2 = VSUB(cc[i+0], cc[i+ido+0]);
  246. v4sf ti2 = VSUB(cc[i+1], cc[i+ido+1]);
  247. v4sf wr = LD_PS1(wa1[i]), wi = VMUL(LD_PS1(fsign), LD_PS1(wa1[i+1]));
  248. ch[i] = VADD(cc[i+0], cc[i+ido+0]);
  249. ch[i+1] = VADD(cc[i+1], cc[i+ido+1]);
  250. VCPLXMUL(tr2, ti2, wr, wi);
  251. ch[i+l1ido] = tr2;
  252. ch[i+l1ido+1] = ti2;
  253. }
  254. }
  255. }
  256. }
  257. /*
  258. passf3 and passb3 has been merged here, fsign = -1 for passf3, +1 for passb3
  259. */
  260. static NEVER_INLINE(void) passf3_ps(int ido, int l1, const v4sf *cc, v4sf *ch,
  261. const float *wa1, const float *wa2, float fsign) {
  262. static const float taur = -0.5f;
  263. float taui = 0.866025403784439f*fsign;
  264. int i, k;
  265. v4sf tr2, ti2, cr2, ci2, cr3, ci3, dr2, di2, dr3, di3;
  266. int l1ido = l1*ido;
  267. float wr1, wi1, wr2, wi2;
  268. assert(ido > 2);
  269. for (k=0; k< l1ido; k += ido, cc+= 3*ido, ch +=ido) {
  270. for (i=0; i<ido-1; i+=2) {
  271. tr2 = VADD(cc[i+ido], cc[i+2*ido]);
  272. cr2 = VADD(cc[i], SVMUL(taur,tr2));
  273. ch[i] = VADD(cc[i], tr2);
  274. ti2 = VADD(cc[i+ido+1], cc[i+2*ido+1]);
  275. ci2 = VADD(cc[i +1], SVMUL(taur,ti2));
  276. ch[i+1] = VADD(cc[i+1], ti2);
  277. cr3 = SVMUL(taui, VSUB(cc[i+ido], cc[i+2*ido]));
  278. ci3 = SVMUL(taui, VSUB(cc[i+ido+1], cc[i+2*ido+1]));
  279. dr2 = VSUB(cr2, ci3);
  280. dr3 = VADD(cr2, ci3);
  281. di2 = VADD(ci2, cr3);
  282. di3 = VSUB(ci2, cr3);
  283. wr1=wa1[i], wi1=fsign*wa1[i+1], wr2=wa2[i], wi2=fsign*wa2[i+1];
  284. VCPLXMUL(dr2, di2, LD_PS1(wr1), LD_PS1(wi1));
  285. ch[i+l1ido] = dr2;
  286. ch[i+l1ido + 1] = di2;
  287. VCPLXMUL(dr3, di3, LD_PS1(wr2), LD_PS1(wi2));
  288. ch[i+2*l1ido] = dr3;
  289. ch[i+2*l1ido+1] = di3;
  290. }
  291. }
  292. } /* passf3 */
  293. static NEVER_INLINE(void) passf4_ps(int ido, int l1, const v4sf *cc, v4sf *ch,
  294. const float *wa1, const float *wa2, const float *wa3, float fsign) {
  295. /* isign == -1 for forward transform and +1 for backward transform */
  296. int i, k;
  297. v4sf ci2, ci3, ci4, cr2, cr3, cr4, ti1, ti2, ti3, ti4, tr1, tr2, tr3, tr4;
  298. int l1ido = l1*ido;
  299. if (ido == 2) {
  300. for (k=0; k < l1ido; k += ido, ch += ido, cc += 4*ido) {
  301. tr1 = VSUB(cc[0], cc[2*ido + 0]);
  302. tr2 = VADD(cc[0], cc[2*ido + 0]);
  303. ti1 = VSUB(cc[1], cc[2*ido + 1]);
  304. ti2 = VADD(cc[1], cc[2*ido + 1]);
  305. ti4 = VMUL(VSUB(cc[1*ido + 0], cc[3*ido + 0]), LD_PS1(fsign));
  306. tr4 = VMUL(VSUB(cc[3*ido + 1], cc[1*ido + 1]), LD_PS1(fsign));
  307. tr3 = VADD(cc[ido + 0], cc[3*ido + 0]);
  308. ti3 = VADD(cc[ido + 1], cc[3*ido + 1]);
  309. ch[0*l1ido + 0] = VADD(tr2, tr3);
  310. ch[0*l1ido + 1] = VADD(ti2, ti3);
  311. ch[1*l1ido + 0] = VADD(tr1, tr4);
  312. ch[1*l1ido + 1] = VADD(ti1, ti4);
  313. ch[2*l1ido + 0] = VSUB(tr2, tr3);
  314. ch[2*l1ido + 1] = VSUB(ti2, ti3);
  315. ch[3*l1ido + 0] = VSUB(tr1, tr4);
  316. ch[3*l1ido + 1] = VSUB(ti1, ti4);
  317. }
  318. } else {
  319. for (k=0; k < l1ido; k += ido, ch+=ido, cc += 4*ido) {
  320. for (i=0; i<ido-1; i+=2) {
  321. float wr1, wi1, wr2, wi2, wr3, wi3;
  322. tr1 = VSUB(cc[i + 0], cc[i + 2*ido + 0]);
  323. tr2 = VADD(cc[i + 0], cc[i + 2*ido + 0]);
  324. ti1 = VSUB(cc[i + 1], cc[i + 2*ido + 1]);
  325. ti2 = VADD(cc[i + 1], cc[i + 2*ido + 1]);
  326. tr4 = VMUL(VSUB(cc[i + 3*ido + 1], cc[i + 1*ido + 1]), LD_PS1(fsign));
  327. ti4 = VMUL(VSUB(cc[i + 1*ido + 0], cc[i + 3*ido + 0]), LD_PS1(fsign));
  328. tr3 = VADD(cc[i + ido + 0], cc[i + 3*ido + 0]);
  329. ti3 = VADD(cc[i + ido + 1], cc[i + 3*ido + 1]);
  330. ch[i] = VADD(tr2, tr3);
  331. cr3 = VSUB(tr2, tr3);
  332. ch[i + 1] = VADD(ti2, ti3);
  333. ci3 = VSUB(ti2, ti3);
  334. cr2 = VADD(tr1, tr4);
  335. cr4 = VSUB(tr1, tr4);
  336. ci2 = VADD(ti1, ti4);
  337. ci4 = VSUB(ti1, ti4);
  338. wr1=wa1[i], wi1=fsign*wa1[i+1];
  339. VCPLXMUL(cr2, ci2, LD_PS1(wr1), LD_PS1(wi1));
  340. wr2=wa2[i], wi2=fsign*wa2[i+1];
  341. ch[i + l1ido] = cr2;
  342. ch[i + l1ido + 1] = ci2;
  343. VCPLXMUL(cr3, ci3, LD_PS1(wr2), LD_PS1(wi2));
  344. wr3=wa3[i], wi3=fsign*wa3[i+1];
  345. ch[i + 2*l1ido] = cr3;
  346. ch[i + 2*l1ido + 1] = ci3;
  347. VCPLXMUL(cr4, ci4, LD_PS1(wr3), LD_PS1(wi3));
  348. ch[i + 3*l1ido] = cr4;
  349. ch[i + 3*l1ido + 1] = ci4;
  350. }
  351. }
  352. }
  353. } /* passf4 */
  354. /*
  355. passf5 and passb5 has been merged here, fsign = -1 for passf5, +1 for passb5
  356. */
  357. static NEVER_INLINE(void) passf5_ps(int ido, int l1, const v4sf *cc, v4sf *ch,
  358. const float *wa1, const float *wa2,
  359. const float *wa3, const float *wa4, float fsign) {
  360. static const float tr11 = .309016994374947f;
  361. const float ti11 = .951056516295154f*fsign;
  362. static const float tr12 = -.809016994374947f;
  363. const float ti12 = .587785252292473f*fsign;
  364. /* Local variables */
  365. int i, k;
  366. v4sf ci2, ci3, ci4, ci5, di3, di4, di5, di2, cr2, cr3, cr5, cr4, ti2, ti3,
  367. ti4, ti5, dr3, dr4, dr5, dr2, tr2, tr3, tr4, tr5;
  368. float wr1, wi1, wr2, wi2, wr3, wi3, wr4, wi4;
  369. #define cc_ref(a_1,a_2) cc[(a_2-1)*ido + a_1 + 1]
  370. #define ch_ref(a_1,a_3) ch[(a_3-1)*l1*ido + a_1 + 1]
  371. assert(ido > 2);
  372. for (k = 0; k < l1; ++k, cc += 5*ido, ch += ido) {
  373. for (i = 0; i < ido-1; i += 2) {
  374. ti5 = VSUB(cc_ref(i , 2), cc_ref(i , 5));
  375. ti2 = VADD(cc_ref(i , 2), cc_ref(i , 5));
  376. ti4 = VSUB(cc_ref(i , 3), cc_ref(i , 4));
  377. ti3 = VADD(cc_ref(i , 3), cc_ref(i , 4));
  378. tr5 = VSUB(cc_ref(i-1, 2), cc_ref(i-1, 5));
  379. tr2 = VADD(cc_ref(i-1, 2), cc_ref(i-1, 5));
  380. tr4 = VSUB(cc_ref(i-1, 3), cc_ref(i-1, 4));
  381. tr3 = VADD(cc_ref(i-1, 3), cc_ref(i-1, 4));
  382. ch_ref(i-1, 1) = VADD(cc_ref(i-1, 1), VADD(tr2, tr3));
  383. ch_ref(i , 1) = VADD(cc_ref(i , 1), VADD(ti2, ti3));
  384. cr2 = VADD(cc_ref(i-1, 1), VADD(SVMUL(tr11, tr2),SVMUL(tr12, tr3)));
  385. ci2 = VADD(cc_ref(i , 1), VADD(SVMUL(tr11, ti2),SVMUL(tr12, ti3)));
  386. cr3 = VADD(cc_ref(i-1, 1), VADD(SVMUL(tr12, tr2),SVMUL(tr11, tr3)));
  387. ci3 = VADD(cc_ref(i , 1), VADD(SVMUL(tr12, ti2),SVMUL(tr11, ti3)));
  388. cr5 = VADD(SVMUL(ti11, tr5), SVMUL(ti12, tr4));
  389. ci5 = VADD(SVMUL(ti11, ti5), SVMUL(ti12, ti4));
  390. cr4 = VSUB(SVMUL(ti12, tr5), SVMUL(ti11, tr4));
  391. ci4 = VSUB(SVMUL(ti12, ti5), SVMUL(ti11, ti4));
  392. dr3 = VSUB(cr3, ci4);
  393. dr4 = VADD(cr3, ci4);
  394. di3 = VADD(ci3, cr4);
  395. di4 = VSUB(ci3, cr4);
  396. dr5 = VADD(cr2, ci5);
  397. dr2 = VSUB(cr2, ci5);
  398. di5 = VSUB(ci2, cr5);
  399. di2 = VADD(ci2, cr5);
  400. wr1=wa1[i], wi1=fsign*wa1[i+1], wr2=wa2[i], wi2=fsign*wa2[i+1];
  401. wr3=wa3[i], wi3=fsign*wa3[i+1], wr4=wa4[i], wi4=fsign*wa4[i+1];
  402. VCPLXMUL(dr2, di2, LD_PS1(wr1), LD_PS1(wi1));
  403. ch_ref(i - 1, 2) = dr2;
  404. ch_ref(i, 2) = di2;
  405. VCPLXMUL(dr3, di3, LD_PS1(wr2), LD_PS1(wi2));
  406. ch_ref(i - 1, 3) = dr3;
  407. ch_ref(i, 3) = di3;
  408. VCPLXMUL(dr4, di4, LD_PS1(wr3), LD_PS1(wi3));
  409. ch_ref(i - 1, 4) = dr4;
  410. ch_ref(i, 4) = di4;
  411. VCPLXMUL(dr5, di5, LD_PS1(wr4), LD_PS1(wi4));
  412. ch_ref(i - 1, 5) = dr5;
  413. ch_ref(i, 5) = di5;
  414. }
  415. }
  416. #undef ch_ref
  417. #undef cc_ref
  418. }
  419. static NEVER_INLINE(void) radf2_ps(int ido, int l1, const v4sf * RESTRICT cc, v4sf * RESTRICT ch, const float *wa1) {
  420. static const float minus_one = -1.f;
  421. int i, k, l1ido = l1*ido;
  422. for (k=0; k < l1ido; k += ido) {
  423. v4sf a = cc[k], b = cc[k + l1ido];
  424. ch[2*k] = VADD(a, b);
  425. ch[2*(k+ido)-1] = VSUB(a, b);
  426. }
  427. if (ido < 2) return;
  428. if (ido != 2) {
  429. for (k=0; k < l1ido; k += ido) {
  430. for (i=2; i<ido; i+=2) {
  431. v4sf tr2 = cc[i - 1 + k + l1ido], ti2 = cc[i + k + l1ido];
  432. v4sf br = cc[i - 1 + k], bi = cc[i + k];
  433. VCPLXMULCONJ(tr2, ti2, LD_PS1(wa1[i - 2]), LD_PS1(wa1[i - 1]));
  434. ch[i + 2*k] = VADD(bi, ti2);
  435. ch[2*(k+ido) - i] = VSUB(ti2, bi);
  436. ch[i - 1 + 2*k] = VADD(br, tr2);
  437. ch[2*(k+ido) - i -1] = VSUB(br, tr2);
  438. }
  439. }
  440. if (ido % 2 == 1) return;
  441. }
  442. for (k=0; k < l1ido; k += ido) {
  443. ch[2*k + ido] = SVMUL(minus_one, cc[ido-1 + k + l1ido]);
  444. ch[2*k + ido-1] = cc[k + ido-1];
  445. }
  446. } /* radf2 */
  447. static NEVER_INLINE(void) radb2_ps(int ido, int l1, const v4sf *cc, v4sf *ch, const float *wa1) {
  448. static const float minus_two=-2;
  449. int i, k, l1ido = l1*ido;
  450. v4sf a,b,c,d, tr2, ti2;
  451. for (k=0; k < l1ido; k += ido) {
  452. a = cc[2*k]; b = cc[2*(k+ido) - 1];
  453. ch[k] = VADD(a, b);
  454. ch[k + l1ido] =VSUB(a, b);
  455. }
  456. if (ido < 2) return;
  457. if (ido != 2) {
  458. for (k = 0; k < l1ido; k += ido) {
  459. for (i = 2; i < ido; i += 2) {
  460. a = cc[i-1 + 2*k]; b = cc[2*(k + ido) - i - 1];
  461. c = cc[i+0 + 2*k]; d = cc[2*(k + ido) - i + 0];
  462. ch[i-1 + k] = VADD(a, b);
  463. tr2 = VSUB(a, b);
  464. ch[i+0 + k] = VSUB(c, d);
  465. ti2 = VADD(c, d);
  466. VCPLXMUL(tr2, ti2, LD_PS1(wa1[i - 2]), LD_PS1(wa1[i - 1]));
  467. ch[i-1 + k + l1ido] = tr2;
  468. ch[i+0 + k + l1ido] = ti2;
  469. }
  470. }
  471. if (ido % 2 == 1) return;
  472. }
  473. for (k = 0; k < l1ido; k += ido) {
  474. a = cc[2*k + ido-1]; b = cc[2*k + ido];
  475. ch[k + ido-1] = VADD(a,a);
  476. ch[k + ido-1 + l1ido] = SVMUL(minus_two, b);
  477. }
  478. } /* radb2 */
  479. static void radf3_ps(int ido, int l1, const v4sf * RESTRICT cc, v4sf * RESTRICT ch,
  480. const float *wa1, const float *wa2) {
  481. static const float taur = -0.5f;
  482. static const float taui = 0.866025403784439f;
  483. int i, k, ic;
  484. v4sf ci2, di2, di3, cr2, dr2, dr3, ti2, ti3, tr2, tr3, wr1, wi1, wr2, wi2;
  485. for (k=0; k<l1; k++) {
  486. cr2 = VADD(cc[(k + l1)*ido], cc[(k + 2*l1)*ido]);
  487. ch[3*k*ido] = VADD(cc[k*ido], cr2);
  488. ch[(3*k+2)*ido] = SVMUL(taui, VSUB(cc[(k + l1*2)*ido], cc[(k + l1)*ido]));
  489. ch[ido-1 + (3*k + 1)*ido] = VADD(cc[k*ido], SVMUL(taur, cr2));
  490. }
  491. if (ido == 1) return;
  492. for (k=0; k<l1; k++) {
  493. for (i=2; i<ido; i+=2) {
  494. ic = ido - i;
  495. wr1 = LD_PS1(wa1[i - 2]); wi1 = LD_PS1(wa1[i - 1]);
  496. dr2 = cc[i - 1 + (k + l1)*ido]; di2 = cc[i + (k + l1)*ido];
  497. VCPLXMULCONJ(dr2, di2, wr1, wi1);
  498. wr2 = LD_PS1(wa2[i - 2]); wi2 = LD_PS1(wa2[i - 1]);
  499. dr3 = cc[i - 1 + (k + l1*2)*ido]; di3 = cc[i + (k + l1*2)*ido];
  500. VCPLXMULCONJ(dr3, di3, wr2, wi2);
  501. cr2 = VADD(dr2, dr3);
  502. ci2 = VADD(di2, di3);
  503. ch[i - 1 + 3*k*ido] = VADD(cc[i - 1 + k*ido], cr2);
  504. ch[i + 3*k*ido] = VADD(cc[i + k*ido], ci2);
  505. tr2 = VADD(cc[i - 1 + k*ido], SVMUL(taur, cr2));
  506. ti2 = VADD(cc[i + k*ido], SVMUL(taur, ci2));
  507. tr3 = SVMUL(taui, VSUB(di2, di3));
  508. ti3 = SVMUL(taui, VSUB(dr3, dr2));
  509. ch[i - 1 + (3*k + 2)*ido] = VADD(tr2, tr3);
  510. ch[ic - 1 + (3*k + 1)*ido] = VSUB(tr2, tr3);
  511. ch[i + (3*k + 2)*ido] = VADD(ti2, ti3);
  512. ch[ic + (3*k + 1)*ido] = VSUB(ti3, ti2);
  513. }
  514. }
  515. } /* radf3 */
  516. static void radb3_ps(int ido, int l1, const v4sf *RESTRICT cc, v4sf *RESTRICT ch,
  517. const float *wa1, const float *wa2)
  518. {
  519. static const float taur = -0.5f;
  520. static const float taui = 0.866025403784439f;
  521. static const float taui_2 = 0.866025403784439f*2;
  522. int i, k, ic;
  523. v4sf ci2, ci3, di2, di3, cr2, cr3, dr2, dr3, ti2, tr2;
  524. for (k=0; k<l1; k++) {
  525. tr2 = cc[ido-1 + (3*k + 1)*ido]; tr2 = VADD(tr2,tr2);
  526. cr2 = VMADD(LD_PS1(taur), tr2, cc[3*k*ido]);
  527. ch[k*ido] = VADD(cc[3*k*ido], tr2);
  528. ci3 = SVMUL(taui_2, cc[(3*k + 2)*ido]);
  529. ch[(k + l1)*ido] = VSUB(cr2, ci3);
  530. ch[(k + 2*l1)*ido] = VADD(cr2, ci3);
  531. }
  532. if (ido == 1) return;
  533. for (k=0; k<l1; k++) {
  534. for (i=2; i<ido; i+=2) {
  535. ic = ido - i;
  536. tr2 = VADD(cc[i - 1 + (3*k + 2)*ido], cc[ic - 1 + (3*k + 1)*ido]);
  537. cr2 = VMADD(LD_PS1(taur), tr2, cc[i - 1 + 3*k*ido]);
  538. ch[i - 1 + k*ido] = VADD(cc[i - 1 + 3*k*ido], tr2);
  539. ti2 = VSUB(cc[i + (3*k + 2)*ido], cc[ic + (3*k + 1)*ido]);
  540. ci2 = VMADD(LD_PS1(taur), ti2, cc[i + 3*k*ido]);
  541. ch[i + k*ido] = VADD(cc[i + 3*k*ido], ti2);
  542. cr3 = SVMUL(taui, VSUB(cc[i - 1 + (3*k + 2)*ido], cc[ic - 1 + (3*k + 1)*ido]));
  543. ci3 = SVMUL(taui, VADD(cc[i + (3*k + 2)*ido], cc[ic + (3*k + 1)*ido]));
  544. dr2 = VSUB(cr2, ci3);
  545. dr3 = VADD(cr2, ci3);
  546. di2 = VADD(ci2, cr3);
  547. di3 = VSUB(ci2, cr3);
  548. VCPLXMUL(dr2, di2, LD_PS1(wa1[i-2]), LD_PS1(wa1[i-1]));
  549. ch[i - 1 + (k + l1)*ido] = dr2;
  550. ch[i + (k + l1)*ido] = di2;
  551. VCPLXMUL(dr3, di3, LD_PS1(wa2[i-2]), LD_PS1(wa2[i-1]));
  552. ch[i - 1 + (k + 2*l1)*ido] = dr3;
  553. ch[i + (k + 2*l1)*ido] = di3;
  554. }
  555. }
  556. } /* radb3 */
  557. static NEVER_INLINE(void) radf4_ps(int ido, int l1, const v4sf *RESTRICT cc, v4sf * RESTRICT ch,
  558. const float * RESTRICT wa1, const float * RESTRICT wa2, const float * RESTRICT wa3)
  559. {
  560. static const float minus_hsqt2 = (float)-0.7071067811865475;
  561. int i, k, l1ido = l1*ido;
  562. {
  563. const v4sf *RESTRICT cc_ = cc, * RESTRICT cc_end = cc + l1ido;
  564. v4sf * RESTRICT ch_ = ch;
  565. while (cc < cc_end) {
  566. // this loop represents between 25% and 40% of total radf4_ps cost !
  567. v4sf a0 = cc[0], a1 = cc[l1ido];
  568. v4sf a2 = cc[2*l1ido], a3 = cc[3*l1ido];
  569. v4sf tr1 = VADD(a1, a3);
  570. v4sf tr2 = VADD(a0, a2);
  571. ch[2*ido-1] = VSUB(a0, a2);
  572. ch[2*ido ] = VSUB(a3, a1);
  573. ch[0 ] = VADD(tr1, tr2);
  574. ch[4*ido-1] = VSUB(tr2, tr1);
  575. cc += ido; ch += 4*ido;
  576. }
  577. cc = cc_; ch = ch_;
  578. }
  579. if (ido < 2) return;
  580. if (ido != 2) {
  581. for (k = 0; k < l1ido; k += ido) {
  582. const v4sf * RESTRICT pc = (v4sf*)(cc + 1 + k);
  583. for (i=2; i<ido; i += 2, pc += 2) {
  584. int ic = ido - i;
  585. v4sf wr, wi, cr2, ci2, cr3, ci3, cr4, ci4;
  586. v4sf tr1, ti1, tr2, ti2, tr3, ti3, tr4, ti4;
  587. cr2 = pc[1*l1ido+0];
  588. ci2 = pc[1*l1ido+1];
  589. wr=LD_PS1(wa1[i - 2]);
  590. wi=LD_PS1(wa1[i - 1]);
  591. VCPLXMULCONJ(cr2,ci2,wr,wi);
  592. cr3 = pc[2*l1ido+0];
  593. ci3 = pc[2*l1ido+1];
  594. wr = LD_PS1(wa2[i-2]);
  595. wi = LD_PS1(wa2[i-1]);
  596. VCPLXMULCONJ(cr3, ci3, wr, wi);
  597. cr4 = pc[3*l1ido];
  598. ci4 = pc[3*l1ido+1];
  599. wr = LD_PS1(wa3[i-2]);
  600. wi = LD_PS1(wa3[i-1]);
  601. VCPLXMULCONJ(cr4, ci4, wr, wi);
  602. /* at this point, on SSE, five of "cr2 cr3 cr4 ci2 ci3 ci4" should be loaded in registers */
  603. tr1 = VADD(cr2,cr4);
  604. tr4 = VSUB(cr4,cr2);
  605. tr2 = VADD(pc[0],cr3);
  606. tr3 = VSUB(pc[0],cr3);
  607. ch[i - 1 + 4*k] = VADD(tr1,tr2);
  608. ch[ic - 1 + 4*k + 3*ido] = VSUB(tr2,tr1); // at this point tr1 and tr2 can be disposed
  609. ti1 = VADD(ci2,ci4);
  610. ti4 = VSUB(ci2,ci4);
  611. ch[i - 1 + 4*k + 2*ido] = VADD(ti4,tr3);
  612. ch[ic - 1 + 4*k + 1*ido] = VSUB(tr3,ti4); // dispose tr3, ti4
  613. ti2 = VADD(pc[1],ci3);
  614. ti3 = VSUB(pc[1],ci3);
  615. ch[i + 4*k] = VADD(ti1, ti2);
  616. ch[ic + 4*k + 3*ido] = VSUB(ti1, ti2);
  617. ch[i + 4*k + 2*ido] = VADD(tr4, ti3);
  618. ch[ic + 4*k + 1*ido] = VSUB(tr4, ti3);
  619. }
  620. }
  621. if (ido % 2 == 1) return;
  622. }
  623. for (k=0; k<l1ido; k += ido) {
  624. v4sf a = cc[ido-1 + k + l1ido], b = cc[ido-1 + k + 3*l1ido];
  625. v4sf c = cc[ido-1 + k], d = cc[ido-1 + k + 2*l1ido];
  626. v4sf ti1 = SVMUL(minus_hsqt2, VADD(a, b));
  627. v4sf tr1 = SVMUL(minus_hsqt2, VSUB(b, a));
  628. ch[ido-1 + 4*k] = VADD(tr1, c);
  629. ch[ido-1 + 4*k + 2*ido] = VSUB(c, tr1);
  630. ch[4*k + 1*ido] = VSUB(ti1, d);
  631. ch[4*k + 3*ido] = VADD(ti1, d);
  632. }
  633. } /* radf4 */
  634. static NEVER_INLINE(void) radb4_ps(int ido, int l1, const v4sf * RESTRICT cc, v4sf * RESTRICT ch,
  635. const float * RESTRICT wa1, const float * RESTRICT wa2, const float *RESTRICT wa3)
  636. {
  637. static const float minus_sqrt2 = (float)-1.414213562373095;
  638. static const float two = 2.f;
  639. int i, k, l1ido = l1*ido;
  640. v4sf ci2, ci3, ci4, cr2, cr3, cr4, ti1, ti2, ti3, ti4, tr1, tr2, tr3, tr4;
  641. {
  642. const v4sf *RESTRICT cc_ = cc, * RESTRICT ch_end = ch + l1ido;
  643. v4sf *ch_ = ch;
  644. while (ch < ch_end) {
  645. v4sf a = cc[0], b = cc[4*ido-1];
  646. v4sf c = cc[2*ido], d = cc[2*ido-1];
  647. tr3 = SVMUL(two,d);
  648. tr2 = VADD(a,b);
  649. tr1 = VSUB(a,b);
  650. tr4 = SVMUL(two,c);
  651. ch[0*l1ido] = VADD(tr2, tr3);
  652. ch[2*l1ido] = VSUB(tr2, tr3);
  653. ch[1*l1ido] = VSUB(tr1, tr4);
  654. ch[3*l1ido] = VADD(tr1, tr4);
  655. cc += 4*ido; ch += ido;
  656. }
  657. cc = cc_; ch = ch_;
  658. }
  659. if (ido < 2) return;
  660. if (ido != 2) {
  661. for (k = 0; k < l1ido; k += ido) {
  662. const v4sf * RESTRICT pc = (v4sf*)(cc - 1 + 4*k);
  663. v4sf * RESTRICT ph = (v4sf*)(ch + k + 1);
  664. for (i = 2; i < ido; i += 2) {
  665. tr1 = VSUB(pc[i], pc[4*ido - i]);
  666. tr2 = VADD(pc[i], pc[4*ido - i]);
  667. ti4 = VSUB(pc[2*ido + i], pc[2*ido - i]);
  668. tr3 = VADD(pc[2*ido + i], pc[2*ido - i]);
  669. ph[0] = VADD(tr2, tr3);
  670. cr3 = VSUB(tr2, tr3);
  671. ti3 = VSUB(pc[2*ido + i + 1], pc[2*ido - i + 1]);
  672. tr4 = VADD(pc[2*ido + i + 1], pc[2*ido - i + 1]);
  673. cr2 = VSUB(tr1, tr4);
  674. cr4 = VADD(tr1, tr4);
  675. ti1 = VADD(pc[i + 1], pc[4*ido - i + 1]);
  676. ti2 = VSUB(pc[i + 1], pc[4*ido - i + 1]);
  677. ph[1] = VADD(ti2, ti3); ph += l1ido;
  678. ci3 = VSUB(ti2, ti3);
  679. ci2 = VADD(ti1, ti4);
  680. ci4 = VSUB(ti1, ti4);
  681. VCPLXMUL(cr2, ci2, LD_PS1(wa1[i-2]), LD_PS1(wa1[i-1]));
  682. ph[0] = cr2;
  683. ph[1] = ci2; ph += l1ido;
  684. VCPLXMUL(cr3, ci3, LD_PS1(wa2[i-2]), LD_PS1(wa2[i-1]));
  685. ph[0] = cr3;
  686. ph[1] = ci3; ph += l1ido;
  687. VCPLXMUL(cr4, ci4, LD_PS1(wa3[i-2]), LD_PS1(wa3[i-1]));
  688. ph[0] = cr4;
  689. ph[1] = ci4; ph = ph - 3*l1ido + 2;
  690. }
  691. }
  692. if (ido % 2 == 1) return;
  693. }
  694. for (k=0; k < l1ido; k+=ido) {
  695. int i0 = 4*k + ido;
  696. v4sf c = cc[i0-1], d = cc[i0 + 2*ido-1];
  697. v4sf a = cc[i0+0], b = cc[i0 + 2*ido+0];
  698. tr1 = VSUB(c,d);
  699. tr2 = VADD(c,d);
  700. ti1 = VADD(b,a);
  701. ti2 = VSUB(b,a);
  702. ch[ido-1 + k + 0*l1ido] = VADD(tr2,tr2);
  703. ch[ido-1 + k + 1*l1ido] = SVMUL(minus_sqrt2, VSUB(ti1, tr1));
  704. ch[ido-1 + k + 2*l1ido] = VADD(ti2, ti2);
  705. ch[ido-1 + k + 3*l1ido] = SVMUL(minus_sqrt2, VADD(ti1, tr1));
  706. }
  707. } /* radb4 */
  708. static void radf5_ps(int ido, int l1, const v4sf * RESTRICT cc, v4sf * RESTRICT ch,
  709. const float *wa1, const float *wa2, const float *wa3, const float *wa4)
  710. {
  711. static const float tr11 = .309016994374947f;
  712. static const float ti11 = .951056516295154f;
  713. static const float tr12 = -.809016994374947f;
  714. static const float ti12 = .587785252292473f;
  715. /* System generated locals */
  716. int cc_offset, ch_offset;
  717. /* Local variables */
  718. int i, k, ic;
  719. v4sf ci2, di2, ci4, ci5, di3, di4, di5, ci3, cr2, cr3, dr2, dr3, dr4, dr5,
  720. cr5, cr4, ti2, ti3, ti5, ti4, tr2, tr3, tr4, tr5;
  721. int idp2;
  722. #define cc_ref(a_1,a_2,a_3) cc[((a_3)*l1 + (a_2))*ido + a_1]
  723. #define ch_ref(a_1,a_2,a_3) ch[((a_3)*5 + (a_2))*ido + a_1]
  724. /* Parameter adjustments */
  725. ch_offset = 1 + ido * 6;
  726. ch -= ch_offset;
  727. cc_offset = 1 + ido * (1 + l1);
  728. cc -= cc_offset;
  729. /* Function Body */
  730. for (k = 1; k <= l1; ++k) {
  731. cr2 = VADD(cc_ref(1, k, 5), cc_ref(1, k, 2));
  732. ci5 = VSUB(cc_ref(1, k, 5), cc_ref(1, k, 2));
  733. cr3 = VADD(cc_ref(1, k, 4), cc_ref(1, k, 3));
  734. ci4 = VSUB(cc_ref(1, k, 4), cc_ref(1, k, 3));
  735. ch_ref(1, 1, k) = VADD(cc_ref(1, k, 1), VADD(cr2, cr3));
  736. ch_ref(ido, 2, k) = VADD(cc_ref(1, k, 1), VADD(SVMUL(tr11, cr2), SVMUL(tr12, cr3)));
  737. ch_ref(1, 3, k) = VADD(SVMUL(ti11, ci5), SVMUL(ti12, ci4));
  738. ch_ref(ido, 4, k) = VADD(cc_ref(1, k, 1), VADD(SVMUL(tr12, cr2), SVMUL(tr11, cr3)));
  739. ch_ref(1, 5, k) = VSUB(SVMUL(ti12, ci5), SVMUL(ti11, ci4));
  740. //printf("pffft: radf5, k=%d ch_ref=%f, ci4=%f\n", k, ch_ref(1, 5, k), ci4);
  741. }
  742. if (ido == 1) {
  743. return;
  744. }
  745. idp2 = ido + 2;
  746. for (k = 1; k <= l1; ++k) {
  747. for (i = 3; i <= ido; i += 2) {
  748. ic = idp2 - i;
  749. dr2 = LD_PS1(wa1[i-3]); di2 = LD_PS1(wa1[i-2]);
  750. dr3 = LD_PS1(wa2[i-3]); di3 = LD_PS1(wa2[i-2]);
  751. dr4 = LD_PS1(wa3[i-3]); di4 = LD_PS1(wa3[i-2]);
  752. dr5 = LD_PS1(wa4[i-3]); di5 = LD_PS1(wa4[i-2]);
  753. VCPLXMULCONJ(dr2, di2, cc_ref(i-1, k, 2), cc_ref(i, k, 2));
  754. VCPLXMULCONJ(dr3, di3, cc_ref(i-1, k, 3), cc_ref(i, k, 3));
  755. VCPLXMULCONJ(dr4, di4, cc_ref(i-1, k, 4), cc_ref(i, k, 4));
  756. VCPLXMULCONJ(dr5, di5, cc_ref(i-1, k, 5), cc_ref(i, k, 5));
  757. cr2 = VADD(dr2, dr5);
  758. ci5 = VSUB(dr5, dr2);
  759. cr5 = VSUB(di2, di5);
  760. ci2 = VADD(di2, di5);
  761. cr3 = VADD(dr3, dr4);
  762. ci4 = VSUB(dr4, dr3);
  763. cr4 = VSUB(di3, di4);
  764. ci3 = VADD(di3, di4);
  765. ch_ref(i - 1, 1, k) = VADD(cc_ref(i - 1, k, 1), VADD(cr2, cr3));
  766. ch_ref(i, 1, k) = VSUB(cc_ref(i, k, 1), VADD(ci2, ci3));//
  767. tr2 = VADD(cc_ref(i - 1, k, 1), VADD(SVMUL(tr11, cr2), SVMUL(tr12, cr3)));
  768. ti2 = VSUB(cc_ref(i, k, 1), VADD(SVMUL(tr11, ci2), SVMUL(tr12, ci3)));//
  769. tr3 = VADD(cc_ref(i - 1, k, 1), VADD(SVMUL(tr12, cr2), SVMUL(tr11, cr3)));
  770. ti3 = VSUB(cc_ref(i, k, 1), VADD(SVMUL(tr12, ci2), SVMUL(tr11, ci3)));//
  771. tr5 = VADD(SVMUL(ti11, cr5), SVMUL(ti12, cr4));
  772. ti5 = VADD(SVMUL(ti11, ci5), SVMUL(ti12, ci4));
  773. tr4 = VSUB(SVMUL(ti12, cr5), SVMUL(ti11, cr4));
  774. ti4 = VSUB(SVMUL(ti12, ci5), SVMUL(ti11, ci4));
  775. ch_ref(i - 1, 3, k) = VSUB(tr2, tr5);
  776. ch_ref(ic - 1, 2, k) = VADD(tr2, tr5);
  777. ch_ref(i, 3, k) = VADD(ti2, ti5);
  778. ch_ref(ic, 2, k) = VSUB(ti5, ti2);
  779. ch_ref(i - 1, 5, k) = VSUB(tr3, tr4);
  780. ch_ref(ic - 1, 4, k) = VADD(tr3, tr4);
  781. ch_ref(i, 5, k) = VADD(ti3, ti4);
  782. ch_ref(ic, 4, k) = VSUB(ti4, ti3);
  783. }
  784. }
  785. #undef cc_ref
  786. #undef ch_ref
  787. } /* radf5 */
  788. static void radb5_ps(int ido, int l1, const v4sf *RESTRICT cc, v4sf *RESTRICT ch,
  789. const float *wa1, const float *wa2, const float *wa3, const float *wa4)
  790. {
  791. static const float tr11 = .309016994374947f;
  792. static const float ti11 = .951056516295154f;
  793. static const float tr12 = -.809016994374947f;
  794. static const float ti12 = .587785252292473f;
  795. int cc_offset, ch_offset;
  796. /* Local variables */
  797. int i, k, ic;
  798. v4sf ci2, ci3, ci4, ci5, di3, di4, di5, di2, cr2, cr3, cr5, cr4, ti2, ti3,
  799. ti4, ti5, dr3, dr4, dr5, dr2, tr2, tr3, tr4, tr5;
  800. int idp2;
  801. #define cc_ref(a_1,a_2,a_3) cc[((a_3)*5 + (a_2))*ido + a_1]
  802. #define ch_ref(a_1,a_2,a_3) ch[((a_3)*l1 + (a_2))*ido + a_1]
  803. /* Parameter adjustments */
  804. ch_offset = 1 + ido * (1 + l1);
  805. ch -= ch_offset;
  806. cc_offset = 1 + ido * 6;
  807. cc -= cc_offset;
  808. /* Function Body */
  809. for (k = 1; k <= l1; ++k) {
  810. ti5 = VADD(cc_ref(1, 3, k), cc_ref(1, 3, k));
  811. ti4 = VADD(cc_ref(1, 5, k), cc_ref(1, 5, k));
  812. tr2 = VADD(cc_ref(ido, 2, k), cc_ref(ido, 2, k));
  813. tr3 = VADD(cc_ref(ido, 4, k), cc_ref(ido, 4, k));
  814. ch_ref(1, k, 1) = VADD(cc_ref(1, 1, k), VADD(tr2, tr3));
  815. cr2 = VADD(cc_ref(1, 1, k), VADD(SVMUL(tr11, tr2), SVMUL(tr12, tr3)));
  816. cr3 = VADD(cc_ref(1, 1, k), VADD(SVMUL(tr12, tr2), SVMUL(tr11, tr3)));
  817. ci5 = VADD(SVMUL(ti11, ti5), SVMUL(ti12, ti4));
  818. ci4 = VSUB(SVMUL(ti12, ti5), SVMUL(ti11, ti4));
  819. ch_ref(1, k, 2) = VSUB(cr2, ci5);
  820. ch_ref(1, k, 3) = VSUB(cr3, ci4);
  821. ch_ref(1, k, 4) = VADD(cr3, ci4);
  822. ch_ref(1, k, 5) = VADD(cr2, ci5);
  823. }
  824. if (ido == 1) {
  825. return;
  826. }
  827. idp2 = ido + 2;
  828. for (k = 1; k <= l1; ++k) {
  829. for (i = 3; i <= ido; i += 2) {
  830. ic = idp2 - i;
  831. ti5 = VADD(cc_ref(i , 3, k), cc_ref(ic , 2, k));
  832. ti2 = VSUB(cc_ref(i , 3, k), cc_ref(ic , 2, k));
  833. ti4 = VADD(cc_ref(i , 5, k), cc_ref(ic , 4, k));
  834. ti3 = VSUB(cc_ref(i , 5, k), cc_ref(ic , 4, k));
  835. tr5 = VSUB(cc_ref(i-1, 3, k), cc_ref(ic-1, 2, k));
  836. tr2 = VADD(cc_ref(i-1, 3, k), cc_ref(ic-1, 2, k));
  837. tr4 = VSUB(cc_ref(i-1, 5, k), cc_ref(ic-1, 4, k));
  838. tr3 = VADD(cc_ref(i-1, 5, k), cc_ref(ic-1, 4, k));
  839. ch_ref(i - 1, k, 1) = VADD(cc_ref(i-1, 1, k), VADD(tr2, tr3));
  840. ch_ref(i, k, 1) = VADD(cc_ref(i, 1, k), VADD(ti2, ti3));
  841. cr2 = VADD(cc_ref(i-1, 1, k), VADD(SVMUL(tr11, tr2), SVMUL(tr12, tr3)));
  842. ci2 = VADD(cc_ref(i , 1, k), VADD(SVMUL(tr11, ti2), SVMUL(tr12, ti3)));
  843. cr3 = VADD(cc_ref(i-1, 1, k), VADD(SVMUL(tr12, tr2), SVMUL(tr11, tr3)));
  844. ci3 = VADD(cc_ref(i , 1, k), VADD(SVMUL(tr12, ti2), SVMUL(tr11, ti3)));
  845. cr5 = VADD(SVMUL(ti11, tr5), SVMUL(ti12, tr4));
  846. ci5 = VADD(SVMUL(ti11, ti5), SVMUL(ti12, ti4));
  847. cr4 = VSUB(SVMUL(ti12, tr5), SVMUL(ti11, tr4));
  848. ci4 = VSUB(SVMUL(ti12, ti5), SVMUL(ti11, ti4));
  849. dr3 = VSUB(cr3, ci4);
  850. dr4 = VADD(cr3, ci4);
  851. di3 = VADD(ci3, cr4);
  852. di4 = VSUB(ci3, cr4);
  853. dr5 = VADD(cr2, ci5);
  854. dr2 = VSUB(cr2, ci5);
  855. di5 = VSUB(ci2, cr5);
  856. di2 = VADD(ci2, cr5);
  857. VCPLXMUL(dr2, di2, LD_PS1(wa1[i-3]), LD_PS1(wa1[i-2]));
  858. VCPLXMUL(dr3, di3, LD_PS1(wa2[i-3]), LD_PS1(wa2[i-2]));
  859. VCPLXMUL(dr4, di4, LD_PS1(wa3[i-3]), LD_PS1(wa3[i-2]));
  860. VCPLXMUL(dr5, di5, LD_PS1(wa4[i-3]), LD_PS1(wa4[i-2]));
  861. ch_ref(i-1, k, 2) = dr2; ch_ref(i, k, 2) = di2;
  862. ch_ref(i-1, k, 3) = dr3; ch_ref(i, k, 3) = di3;
  863. ch_ref(i-1, k, 4) = dr4; ch_ref(i, k, 4) = di4;
  864. ch_ref(i-1, k, 5) = dr5; ch_ref(i, k, 5) = di5;
  865. }
  866. }
  867. #undef cc_ref
  868. #undef ch_ref
  869. } /* radb5 */
  870. static NEVER_INLINE(v4sf *) rfftf1_ps(int n, const v4sf *input_readonly, v4sf *work1, v4sf *work2,
  871. const float *wa, const int *ifac) {
  872. v4sf *in = (v4sf*)input_readonly;
  873. v4sf *out = (in == work2 ? work1 : work2);
  874. int nf = ifac[1], k1;
  875. int l2 = n;
  876. int iw = n-1;
  877. assert(in != out && work1 != work2);
  878. for (k1 = 1; k1 <= nf; ++k1) {
  879. int kh = nf - k1;
  880. int ip = ifac[kh + 2];
  881. int l1 = l2 / ip;
  882. int ido = n / l2;
  883. iw -= (ip - 1)*ido;
  884. switch (ip) {
  885. case 5: {
  886. int ix2 = iw + ido;
  887. int ix3 = ix2 + ido;
  888. int ix4 = ix3 + ido;
  889. radf5_ps(ido, l1, in, out, &wa[iw], &wa[ix2], &wa[ix3], &wa[ix4]);
  890. } break;
  891. case 4: {
  892. int ix2 = iw + ido;
  893. int ix3 = ix2 + ido;
  894. radf4_ps(ido, l1, in, out, &wa[iw], &wa[ix2], &wa[ix3]);
  895. } break;
  896. case 3: {
  897. int ix2 = iw + ido;
  898. radf3_ps(ido, l1, in, out, &wa[iw], &wa[ix2]);
  899. } break;
  900. case 2:
  901. radf2_ps(ido, l1, in, out, &wa[iw]);
  902. break;
  903. default:
  904. assert(0);
  905. break;
  906. }
  907. l2 = l1;
  908. if (out == work2) {
  909. out = work1; in = work2;
  910. } else {
  911. out = work2; in = work1;
  912. }
  913. }
  914. return in; /* this is in fact the output .. */
  915. } /* rfftf1 */
  916. static NEVER_INLINE(v4sf *) rfftb1_ps(int n, const v4sf *input_readonly, v4sf *work1, v4sf *work2,
  917. const float *wa, const int *ifac) {
  918. v4sf *in = (v4sf*)input_readonly;
  919. v4sf *out = (in == work2 ? work1 : work2);
  920. int nf = ifac[1], k1;
  921. int l1 = 1;
  922. int iw = 0;
  923. assert(in != out);
  924. for (k1=1; k1<=nf; k1++) {
  925. int ip = ifac[k1 + 1];
  926. int l2 = ip*l1;
  927. int ido = n / l2;
  928. switch (ip) {
  929. case 5: {
  930. int ix2 = iw + ido;
  931. int ix3 = ix2 + ido;
  932. int ix4 = ix3 + ido;
  933. radb5_ps(ido, l1, in, out, &wa[iw], &wa[ix2], &wa[ix3], &wa[ix4]);
  934. } break;
  935. case 4: {
  936. int ix2 = iw + ido;
  937. int ix3 = ix2 + ido;
  938. radb4_ps(ido, l1, in, out, &wa[iw], &wa[ix2], &wa[ix3]);
  939. } break;
  940. case 3: {
  941. int ix2 = iw + ido;
  942. radb3_ps(ido, l1, in, out, &wa[iw], &wa[ix2]);
  943. } break;
  944. case 2:
  945. radb2_ps(ido, l1, in, out, &wa[iw]);
  946. break;
  947. default:
  948. assert(0);
  949. break;
  950. }
  951. l1 = l2;
  952. iw += (ip - 1)*ido;
  953. if (out == work2) {
  954. out = work1; in = work2;
  955. } else {
  956. out = work2; in = work1;
  957. }
  958. }
  959. return in; /* this is in fact the output .. */
  960. }
  961. static int decompose(int n, int *ifac, const int *ntryh) {
  962. int nl = n, nf = 0, i, j = 0;
  963. for (j=0; ntryh[j]; ++j) {
  964. int ntry = ntryh[j];
  965. while (nl != 1) {
  966. int nq = nl / ntry;
  967. int nr = nl - ntry * nq;
  968. if (nr == 0) {
  969. ifac[2+nf++] = ntry;
  970. nl = nq;
  971. if (ntry == 2 && nf != 1) {
  972. for (i = 2; i <= nf; ++i) {
  973. int ib = nf - i + 2;
  974. ifac[ib + 1] = ifac[ib];
  975. }
  976. ifac[2] = 2;
  977. }
  978. } else break;
  979. }
  980. }
  981. ifac[0] = n;
  982. ifac[1] = nf;
  983. return nf;
  984. }
  985. static void rffti1_ps(int n, float *wa, int *ifac)
  986. {
  987. static const int ntryh[] = { 4,2,3,5,0 };
  988. int k1, j, ii;
  989. int nf = decompose(n,ifac,ntryh);
  990. float argh = (2*M_PI) / n;
  991. int is = 0;
  992. int nfm1 = nf - 1;
  993. int l1 = 1;
  994. for (k1 = 1; k1 <= nfm1; k1++) {
  995. int ip = ifac[k1 + 1];
  996. int ld = 0;
  997. int l2 = l1*ip;
  998. int ido = n / l2;
  999. int ipm = ip - 1;
  1000. for (j = 1; j <= ipm; ++j) {
  1001. float argld;
  1002. int i = is, fi=0;
  1003. ld += l1;
  1004. argld = ld*argh;
  1005. for (ii = 3; ii <= ido; ii += 2) {
  1006. i += 2;
  1007. fi += 1;
  1008. wa[i - 2] = cos(fi*argld);
  1009. wa[i - 1] = sin(fi*argld);
  1010. }
  1011. is += ido;
  1012. }
  1013. l1 = l2;
  1014. }
  1015. } /* rffti1 */
  1016. void cffti1_ps(int n, float *wa, int *ifac)
  1017. {
  1018. static const int ntryh[] = { 5,3,4,2,0 };
  1019. int k1, j, ii;
  1020. int nf = decompose(n,ifac,ntryh);
  1021. float argh = (2*M_PI)/(float)n;
  1022. int i = 1;
  1023. int l1 = 1;
  1024. for (k1=1; k1<=nf; k1++) {
  1025. int ip = ifac[k1+1];
  1026. int ld = 0;
  1027. int l2 = l1*ip;
  1028. int ido = n / l2;
  1029. int idot = ido + ido + 2;
  1030. int ipm = ip - 1;
  1031. for (j=1; j<=ipm; j++) {
  1032. float argld;
  1033. int i1 = i, fi = 0;
  1034. wa[i-1] = 1;
  1035. wa[i] = 0;
  1036. ld += l1;
  1037. argld = ld*argh;
  1038. for (ii = 4; ii <= idot; ii += 2) {
  1039. i += 2;
  1040. fi += 1;
  1041. wa[i-1] = cos(fi*argld);
  1042. wa[i] = sin(fi*argld);
  1043. }
  1044. if (ip > 5) {
  1045. wa[i1-1] = wa[i-1];
  1046. wa[i1] = wa[i];
  1047. }
  1048. }
  1049. l1 = l2;
  1050. }
  1051. } /* cffti1 */
  1052. v4sf *cfftf1_ps(int n, const v4sf *input_readonly, v4sf *work1, v4sf *work2, const float *wa, const int *ifac, int isign) {
  1053. v4sf *in = (v4sf*)input_readonly;
  1054. v4sf *out = (in == work2 ? work1 : work2);
  1055. int nf = ifac[1], k1;
  1056. int l1 = 1;
  1057. int iw = 0;
  1058. assert(in != out && work1 != work2);
  1059. for (k1=2; k1<=nf+1; k1++) {
  1060. int ip = ifac[k1];
  1061. int l2 = ip*l1;
  1062. int ido = n / l2;
  1063. int idot = ido + ido;
  1064. switch (ip) {
  1065. case 5: {
  1066. int ix2 = iw + idot;
  1067. int ix3 = ix2 + idot;
  1068. int ix4 = ix3 + idot;
  1069. passf5_ps(idot, l1, in, out, &wa[iw], &wa[ix2], &wa[ix3], &wa[ix4], isign);
  1070. } break;
  1071. case 4: {
  1072. int ix2 = iw + idot;
  1073. int ix3 = ix2 + idot;
  1074. passf4_ps(idot, l1, in, out, &wa[iw], &wa[ix2], &wa[ix3], isign);
  1075. } break;
  1076. case 2: {
  1077. passf2_ps(idot, l1, in, out, &wa[iw], isign);
  1078. } break;
  1079. case 3: {
  1080. int ix2 = iw + idot;
  1081. passf3_ps(idot, l1, in, out, &wa[iw], &wa[ix2], isign);
  1082. } break;
  1083. default:
  1084. assert(0);
  1085. }
  1086. l1 = l2;
  1087. iw += (ip - 1)*idot;
  1088. if (out == work2) {
  1089. out = work1; in = work2;
  1090. } else {
  1091. out = work2; in = work1;
  1092. }
  1093. }
  1094. return in; /* this is in fact the output .. */
  1095. }
  1096. struct PFFFT_Setup {
  1097. int N;
  1098. int Ncvec; // nb of complex simd vectors (N/4 if PFFFT_COMPLEX, N/8 if PFFFT_REAL)
  1099. int ifac[15];
  1100. pffft_transform_t transform;
  1101. v4sf *data; // allocated room for twiddle coefs
  1102. float *e; // points into 'data' , N/4*3 elements
  1103. float *twiddle; // points into 'data', N/4 elements
  1104. };
  1105. PFFFT_Setup *pffft_new_setup(int N, pffft_transform_t transform) {
  1106. PFFFT_Setup *s = (PFFFT_Setup*)malloc(sizeof(PFFFT_Setup));
  1107. int k, m;
  1108. /* unfortunately, the fft size must be a multiple of 16 for complex FFTs
  1109. and 32 for real FFTs -- a lot of stuff would need to be rewritten to
  1110. handle other cases (or maybe just switch to a scalar fft, I don't know..) */
  1111. if (transform == PFFFT_REAL) { assert((N%(2*SIMD_SZ*SIMD_SZ))==0 && N>0); }
  1112. if (transform == PFFFT_COMPLEX) { assert((N%(SIMD_SZ*SIMD_SZ))==0 && N>0); }
  1113. //assert((N % 32) == 0);
  1114. s->N = N;
  1115. s->transform = transform;
  1116. /* nb of complex simd vectors */
  1117. s->Ncvec = (transform == PFFFT_REAL ? N/2 : N)/SIMD_SZ;
  1118. s->data = (v4sf*)pffft_aligned_malloc(2*s->Ncvec * sizeof(v4sf));
  1119. s->e = (float*)s->data;
  1120. s->twiddle = (float*)(s->data + (2*s->Ncvec*(SIMD_SZ-1))/SIMD_SZ);
  1121. if (transform == PFFFT_REAL) {
  1122. for (k=0; k < s->Ncvec; ++k) {
  1123. int i = k/SIMD_SZ;
  1124. int j = k%SIMD_SZ;
  1125. for (m=0; m < SIMD_SZ-1; ++m) {
  1126. float A = -2*M_PI*(m+1)*k / N;
  1127. s->e[(2*(i*3 + m) + 0) * SIMD_SZ + j] = cos(A);
  1128. s->e[(2*(i*3 + m) + 1) * SIMD_SZ + j] = sin(A);
  1129. }
  1130. }
  1131. rffti1_ps(N/SIMD_SZ, s->twiddle, s->ifac);
  1132. } else {
  1133. for (k=0; k < s->Ncvec; ++k) {
  1134. int i = k/SIMD_SZ;
  1135. int j = k%SIMD_SZ;
  1136. for (m=0; m < SIMD_SZ-1; ++m) {
  1137. float A = -2*M_PI*(m+1)*k / N;
  1138. s->e[(2*(i*3 + m) + 0)*SIMD_SZ + j] = cos(A);
  1139. s->e[(2*(i*3 + m) + 1)*SIMD_SZ + j] = sin(A);
  1140. }
  1141. }
  1142. cffti1_ps(N/SIMD_SZ, s->twiddle, s->ifac);
  1143. }
  1144. /* check that N is decomposable with allowed prime factors */
  1145. for (k=0, m=1; k < s->ifac[1]; ++k) { m *= s->ifac[2+k]; }
  1146. if (m != N/SIMD_SZ) {
  1147. pffft_destroy_setup(s); s = 0;
  1148. }
  1149. return s;
  1150. }
  1151. void pffft_destroy_setup(PFFFT_Setup *s) {
  1152. pffft_aligned_free(s->data);
  1153. free(s);
  1154. }
  1155. #if !defined(PFFFT_SIMD_DISABLE)
  1156. /* [0 0 1 2 3 4 5 6 7 8] -> [0 8 7 6 5 4 3 2 1] */
  1157. static void reversed_copy(int N, const v4sf *in, int in_stride, v4sf *out) {
  1158. v4sf g0, g1;
  1159. int k;
  1160. INTERLEAVE2(in[0], in[1], g0, g1); in += in_stride;
  1161. *--out = VSWAPHL(g0, g1); // [g0l, g0h], [g1l g1h] -> [g1l, g0h]
  1162. for (k=1; k < N; ++k) {
  1163. v4sf h0, h1;
  1164. INTERLEAVE2(in[0], in[1], h0, h1); in += in_stride;
  1165. *--out = VSWAPHL(g1, h0);
  1166. *--out = VSWAPHL(h0, h1);
  1167. g1 = h1;
  1168. }
  1169. *--out = VSWAPHL(g1, g0);
  1170. }
  1171. static void unreversed_copy(int N, const v4sf *in, v4sf *out, int out_stride) {
  1172. v4sf g0, g1, h0, h1;
  1173. int k;
  1174. g0 = g1 = in[0]; ++in;
  1175. for (k=1; k < N; ++k) {
  1176. h0 = *in++; h1 = *in++;
  1177. g1 = VSWAPHL(g1, h0);
  1178. h0 = VSWAPHL(h0, h1);
  1179. UNINTERLEAVE2(h0, g1, out[0], out[1]); out += out_stride;
  1180. g1 = h1;
  1181. }
  1182. h0 = *in++; h1 = g0;
  1183. g1 = VSWAPHL(g1, h0);
  1184. h0 = VSWAPHL(h0, h1);
  1185. UNINTERLEAVE2(h0, g1, out[0], out[1]);
  1186. }
  1187. void pffft_zreorder(PFFFT_Setup *setup, const float *in, float *out, pffft_direction_t direction) {
  1188. int k, N = setup->N, Ncvec = setup->Ncvec;
  1189. const v4sf *vin = (const v4sf*)in;
  1190. v4sf *vout = (v4sf*)out;
  1191. assert(in != out);
  1192. if (setup->transform == PFFFT_REAL) {
  1193. int k, dk = N/32;
  1194. if (direction == PFFFT_FORWARD) {
  1195. for (k=0; k < dk; ++k) {
  1196. INTERLEAVE2(vin[k*8 + 0], vin[k*8 + 1], vout[2*(0*dk + k) + 0], vout[2*(0*dk + k) + 1]);
  1197. INTERLEAVE2(vin[k*8 + 4], vin[k*8 + 5], vout[2*(2*dk + k) + 0], vout[2*(2*dk + k) + 1]);
  1198. }
  1199. reversed_copy(dk, vin+2, 8, (v4sf*)(out + N/2));
  1200. reversed_copy(dk, vin+6, 8, (v4sf*)(out + N));
  1201. } else {
  1202. for (k=0; k < dk; ++k) {
  1203. UNINTERLEAVE2(vin[2*(0*dk + k) + 0], vin[2*(0*dk + k) + 1], vout[k*8 + 0], vout[k*8 + 1]);
  1204. UNINTERLEAVE2(vin[2*(2*dk + k) + 0], vin[2*(2*dk + k) + 1], vout[k*8 + 4], vout[k*8 + 5]);
  1205. }
  1206. unreversed_copy(dk, (v4sf*)(in + N/4), (v4sf*)(out + N - 6*SIMD_SZ), -8);
  1207. unreversed_copy(dk, (v4sf*)(in + 3*N/4), (v4sf*)(out + N - 2*SIMD_SZ), -8);
  1208. }
  1209. } else {
  1210. if (direction == PFFFT_FORWARD) {
  1211. for (k=0; k < Ncvec; ++k) {
  1212. int kk = (k/4) + (k%4)*(Ncvec/4);
  1213. INTERLEAVE2(vin[k*2], vin[k*2+1], vout[kk*2], vout[kk*2+1]);
  1214. }
  1215. } else {
  1216. for (k=0; k < Ncvec; ++k) {
  1217. int kk = (k/4) + (k%4)*(Ncvec/4);
  1218. UNINTERLEAVE2(vin[kk*2], vin[kk*2+1], vout[k*2], vout[k*2+1]);
  1219. }
  1220. }
  1221. }
  1222. }
  1223. void pffft_cplx_finalize(int Ncvec, const v4sf *in, v4sf *out, const v4sf *e) {
  1224. int k, dk = Ncvec/SIMD_SZ; // number of 4x4 matrix blocks
  1225. v4sf r0, i0, r1, i1, r2, i2, r3, i3;
  1226. v4sf sr0, dr0, sr1, dr1, si0, di0, si1, di1;
  1227. assert(in != out);
  1228. for (k=0; k < dk; ++k) {
  1229. r0 = in[8*k+0]; i0 = in[8*k+1];
  1230. r1 = in[8*k+2]; i1 = in[8*k+3];
  1231. r2 = in[8*k+4]; i2 = in[8*k+5];
  1232. r3 = in[8*k+6]; i3 = in[8*k+7];
  1233. VTRANSPOSE4(r0,r1,r2,r3);
  1234. VTRANSPOSE4(i0,i1,i2,i3);
  1235. VCPLXMUL(r1,i1,e[k*6+0],e[k*6+1]);
  1236. VCPLXMUL(r2,i2,e[k*6+2],e[k*6+3]);
  1237. VCPLXMUL(r3,i3,e[k*6+4],e[k*6+5]);
  1238. sr0 = VADD(r0,r2); dr0 = VSUB(r0, r2);
  1239. sr1 = VADD(r1,r3); dr1 = VSUB(r1, r3);
  1240. si0 = VADD(i0,i2); di0 = VSUB(i0, i2);
  1241. si1 = VADD(i1,i3); di1 = VSUB(i1, i3);
  1242. /*
  1243. transformation for each column is:
  1244. [1 1 1 1 0 0 0 0] [r0]
  1245. [1 0 -1 0 0 -1 0 1] [r1]
  1246. [1 -1 1 -1 0 0 0 0] [r2]
  1247. [1 0 -1 0 0 1 0 -1] [r3]
  1248. [0 0 0 0 1 1 1 1] * [i0]
  1249. [0 1 0 -1 1 0 -1 0] [i1]
  1250. [0 0 0 0 1 -1 1 -1] [i2]
  1251. [0 -1 0 1 1 0 -1 0] [i3]
  1252. */
  1253. r0 = VADD(sr0, sr1); i0 = VADD(si0, si1);
  1254. r1 = VADD(dr0, di1); i1 = VSUB(di0, dr1);
  1255. r2 = VSUB(sr0, sr1); i2 = VSUB(si0, si1);
  1256. r3 = VSUB(dr0, di1); i3 = VADD(di0, dr1);
  1257. *out++ = r0; *out++ = i0; *out++ = r1; *out++ = i1;
  1258. *out++ = r2; *out++ = i2; *out++ = r3; *out++ = i3;
  1259. }
  1260. }
  1261. void pffft_cplx_preprocess(int Ncvec, const v4sf *in, v4sf *out, const v4sf *e) {
  1262. int k, dk = Ncvec/SIMD_SZ; // number of 4x4 matrix blocks
  1263. v4sf r0, i0, r1, i1, r2, i2, r3, i3;
  1264. v4sf sr0, dr0, sr1, dr1, si0, di0, si1, di1;
  1265. assert(in != out);
  1266. for (k=0; k < dk; ++k) {
  1267. r0 = in[8*k+0]; i0 = in[8*k+1];
  1268. r1 = in[8*k+2]; i1 = in[8*k+3];
  1269. r2 = in[8*k+4]; i2 = in[8*k+5];
  1270. r3 = in[8*k+6]; i3 = in[8*k+7];
  1271. sr0 = VADD(r0,r2); dr0 = VSUB(r0, r2);
  1272. sr1 = VADD(r1,r3); dr1 = VSUB(r1, r3);
  1273. si0 = VADD(i0,i2); di0 = VSUB(i0, i2);
  1274. si1 = VADD(i1,i3); di1 = VSUB(i1, i3);
  1275. r0 = VADD(sr0, sr1); i0 = VADD(si0, si1);
  1276. r1 = VSUB(dr0, di1); i1 = VADD(di0, dr1);
  1277. r2 = VSUB(sr0, sr1); i2 = VSUB(si0, si1);
  1278. r3 = VADD(dr0, di1); i3 = VSUB(di0, dr1);
  1279. VCPLXMULCONJ(r1,i1,e[k*6+0],e[k*6+1]);
  1280. VCPLXMULCONJ(r2,i2,e[k*6+2],e[k*6+3]);
  1281. VCPLXMULCONJ(r3,i3,e[k*6+4],e[k*6+5]);
  1282. VTRANSPOSE4(r0,r1,r2,r3);
  1283. VTRANSPOSE4(i0,i1,i2,i3);
  1284. *out++ = r0; *out++ = i0; *out++ = r1; *out++ = i1;
  1285. *out++ = r2; *out++ = i2; *out++ = r3; *out++ = i3;
  1286. }
  1287. }
  1288. static ALWAYS_INLINE(void) pffft_real_finalize_4x4(const v4sf *in0, const v4sf *in1, const v4sf *in,
  1289. const v4sf *e, v4sf *out) {
  1290. v4sf r0, i0, r1, i1, r2, i2, r3, i3;
  1291. v4sf sr0, dr0, sr1, dr1, si0, di0, si1, di1;
  1292. r0 = *in0; i0 = *in1;
  1293. r1 = *in++; i1 = *in++; r2 = *in++; i2 = *in++; r3 = *in++; i3 = *in++;
  1294. VTRANSPOSE4(r0,r1,r2,r3);
  1295. VTRANSPOSE4(i0,i1,i2,i3);
  1296. /*
  1297. transformation for each column is:
  1298. [1 1 1 1 0 0 0 0] [r0]
  1299. [1 0 -1 0 0 -1 0 1] [r1]
  1300. [1 0 -1 0 0 1 0 -1] [r2]
  1301. [1 -1 1 -1 0 0 0 0] [r3]
  1302. [0 0 0 0 1 1 1 1] * [i0]
  1303. [0 -1 0 1 -1 0 1 0] [i1]
  1304. [0 -1 0 1 1 0 -1 0] [i2]
  1305. [0 0 0 0 -1 1 -1 1] [i3]
  1306. */
  1307. //cerr << "matrix initial, before e , REAL:\n 1: " << r0 << "\n 1: " << r1 << "\n 1: " << r2 << "\n 1: " << r3 << "\n";
  1308. //cerr << "matrix initial, before e, IMAG :\n 1: " << i0 << "\n 1: " << i1 << "\n 1: " << i2 << "\n 1: " << i3 << "\n";
  1309. VCPLXMUL(r1,i1,e[0],e[1]);
  1310. VCPLXMUL(r2,i2,e[2],e[3]);
  1311. VCPLXMUL(r3,i3,e[4],e[5]);
  1312. //cerr << "matrix initial, real part:\n 1: " << r0 << "\n 1: " << r1 << "\n 1: " << r2 << "\n 1: " << r3 << "\n";
  1313. //cerr << "matrix initial, imag part:\n 1: " << i0 << "\n 1: " << i1 << "\n 1: " << i2 << "\n 1: " << i3 << "\n";
  1314. sr0 = VADD(r0,r2); dr0 = VSUB(r0,r2);
  1315. sr1 = VADD(r1,r3); dr1 = VSUB(r3,r1);
  1316. si0 = VADD(i0,i2); di0 = VSUB(i0,i2);
  1317. si1 = VADD(i1,i3); di1 = VSUB(i3,i1);
  1318. r0 = VADD(sr0, sr1);
  1319. r3 = VSUB(sr0, sr1);
  1320. i0 = VADD(si0, si1);
  1321. i3 = VSUB(si1, si0);
  1322. r1 = VADD(dr0, di1);
  1323. r2 = VSUB(dr0, di1);
  1324. i1 = VSUB(dr1, di0);
  1325. i2 = VADD(dr1, di0);
  1326. *out++ = r0;
  1327. *out++ = i0;
  1328. *out++ = r1;
  1329. *out++ = i1;
  1330. *out++ = r2;
  1331. *out++ = i2;
  1332. *out++ = r3;
  1333. *out++ = i3;
  1334. }
  1335. static NEVER_INLINE(void) pffft_real_finalize(int Ncvec, const v4sf *in, v4sf *out, const v4sf *e) {
  1336. int k, dk = Ncvec/SIMD_SZ; // number of 4x4 matrix blocks
  1337. /* fftpack order is f0r f1r f1i f2r f2i ... f(n-1)r f(n-1)i f(n)r */
  1338. v4sf_union cr, ci, *uout = (v4sf_union*)out;
  1339. v4sf save = in[7], zero=VZERO();
  1340. float xr0, xi0, xr1, xi1, xr2, xi2, xr3, xi3;
  1341. static const float s = M_SQRT2/2;
  1342. cr.v = in[0]; ci.v = in[Ncvec*2-1];
  1343. assert(in != out);
  1344. pffft_real_finalize_4x4(&zero, &zero, in+1, e, out);
  1345. /*
  1346. [cr0 cr1 cr2 cr3 ci0 ci1 ci2 ci3]
  1347. [Xr(1)] ] [1 1 1 1 0 0 0 0]
  1348. [Xr(N/4) ] [0 0 0 0 1 s 0 -s]
  1349. [Xr(N/2) ] [1 0 -1 0 0 0 0 0]
  1350. [Xr(3N/4)] [0 0 0 0 1 -s 0 s]
  1351. [Xi(1) ] [1 -1 1 -1 0 0 0 0]
  1352. [Xi(N/4) ] [0 0 0 0 0 -s -1 -s]
  1353. [Xi(N/2) ] [0 -1 0 1 0 0 0 0]
  1354. [Xi(3N/4)] [0 0 0 0 0 -s 1 -s]
  1355. */
  1356. xr0=(cr.f[0]+cr.f[2]) + (cr.f[1]+cr.f[3]); uout[0].f[0] = xr0;
  1357. xi0=(cr.f[0]+cr.f[2]) - (cr.f[1]+cr.f[3]); uout[1].f[0] = xi0;
  1358. xr2=(cr.f[0]-cr.f[2]); uout[4].f[0] = xr2;
  1359. xi2=(cr.f[3]-cr.f[1]); uout[5].f[0] = xi2;
  1360. xr1= ci.f[0] + s*(ci.f[1]-ci.f[3]); uout[2].f[0] = xr1;
  1361. xi1=-ci.f[2] - s*(ci.f[1]+ci.f[3]); uout[3].f[0] = xi1;
  1362. xr3= ci.f[0] - s*(ci.f[1]-ci.f[3]); uout[6].f[0] = xr3;
  1363. xi3= ci.f[2] - s*(ci.f[1]+ci.f[3]); uout[7].f[0] = xi3;
  1364. for (k=1; k < dk; ++k) {
  1365. v4sf save_next = in[8*k+7];
  1366. pffft_real_finalize_4x4(&save, &in[8*k+0], in + 8*k+1,
  1367. e + k*6, out + k*8);
  1368. save = save_next;
  1369. }
  1370. }
  1371. static ALWAYS_INLINE(void) pffft_real_preprocess_4x4(const v4sf *in,
  1372. const v4sf *e, v4sf *out, int first) {
  1373. v4sf r0=in[0], i0=in[1], r1=in[2], i1=in[3], r2=in[4], i2=in[5], r3=in[6], i3=in[7];
  1374. /*
  1375. transformation for each column is:
  1376. [1 1 1 1 0 0 0 0] [r0]
  1377. [1 0 0 -1 0 -1 -1 0] [r1]
  1378. [1 -1 -1 1 0 0 0 0] [r2]
  1379. [1 0 0 -1 0 1 1 0] [r3]
  1380. [0 0 0 0 1 -1 1 -1] * [i0]
  1381. [0 -1 1 0 1 0 0 1] [i1]
  1382. [0 0 0 0 1 1 -1 -1] [i2]
  1383. [0 1 -1 0 1 0 0 1] [i3]
  1384. */
  1385. v4sf sr0 = VADD(r0,r3), dr0 = VSUB(r0,r3);
  1386. v4sf sr1 = VADD(r1,r2), dr1 = VSUB(r1,r2);
  1387. v4sf si0 = VADD(i0,i3), di0 = VSUB(i0,i3);
  1388. v4sf si1 = VADD(i1,i2), di1 = VSUB(i1,i2);
  1389. r0 = VADD(sr0, sr1);
  1390. r2 = VSUB(sr0, sr1);
  1391. r1 = VSUB(dr0, si1);
  1392. r3 = VADD(dr0, si1);
  1393. i0 = VSUB(di0, di1);
  1394. i2 = VADD(di0, di1);
  1395. i1 = VSUB(si0, dr1);
  1396. i3 = VADD(si0, dr1);
  1397. VCPLXMULCONJ(r1,i1,e[0],e[1]);
  1398. VCPLXMULCONJ(r2,i2,e[2],e[3]);
  1399. VCPLXMULCONJ(r3,i3,e[4],e[5]);
  1400. VTRANSPOSE4(r0,r1,r2,r3);
  1401. VTRANSPOSE4(i0,i1,i2,i3);
  1402. if (!first) {
  1403. *out++ = r0;
  1404. *out++ = i0;
  1405. }
  1406. *out++ = r1;
  1407. *out++ = i1;
  1408. *out++ = r2;
  1409. *out++ = i2;
  1410. *out++ = r3;
  1411. *out++ = i3;
  1412. }
  1413. static NEVER_INLINE(void) pffft_real_preprocess(int Ncvec, const v4sf *in, v4sf *out, const v4sf *e) {
  1414. int k, dk = Ncvec/SIMD_SZ; // number of 4x4 matrix blocks
  1415. /* fftpack order is f0r f1r f1i f2r f2i ... f(n-1)r f(n-1)i f(n)r */
  1416. v4sf_union Xr, Xi, *uout = (v4sf_union*)out;
  1417. float cr0, ci0, cr1, ci1, cr2, ci2, cr3, ci3;
  1418. static const float s = M_SQRT2;
  1419. assert(in != out);
  1420. for (k=0; k < 4; ++k) {
  1421. Xr.f[k] = ((float*)in)[8*k];
  1422. Xi.f[k] = ((float*)in)[8*k+4];
  1423. }
  1424. pffft_real_preprocess_4x4(in, e, out+1, 1); // will write only 6 values
  1425. /*
  1426. [Xr0 Xr1 Xr2 Xr3 Xi0 Xi1 Xi2 Xi3]
  1427. [cr0] [1 0 2 0 1 0 0 0]
  1428. [cr1] [1 0 0 0 -1 0 -2 0]
  1429. [cr2] [1 0 -2 0 1 0 0 0]
  1430. [cr3] [1 0 0 0 -1 0 2 0]
  1431. [ci0] [0 2 0 2 0 0 0 0]
  1432. [ci1] [0 s 0 -s 0 -s 0 -s]
  1433. [ci2] [0 0 0 0 0 -2 0 2]
  1434. [ci3] [0 -s 0 s 0 -s 0 -s]
  1435. */
  1436. for (k=1; k < dk; ++k) {
  1437. pffft_real_preprocess_4x4(in+8*k, e + k*6, out-1+k*8, 0);
  1438. }
  1439. cr0=(Xr.f[0]+Xi.f[0]) + 2*Xr.f[2]; uout[0].f[0] = cr0;
  1440. cr1=(Xr.f[0]-Xi.f[0]) - 2*Xi.f[2]; uout[0].f[1] = cr1;
  1441. cr2=(Xr.f[0]+Xi.f[0]) - 2*Xr.f[2]; uout[0].f[2] = cr2;
  1442. cr3=(Xr.f[0]-Xi.f[0]) + 2*Xi.f[2]; uout[0].f[3] = cr3;
  1443. ci0= 2*(Xr.f[1]+Xr.f[3]); uout[2*Ncvec-1].f[0] = ci0;
  1444. ci1= s*(Xr.f[1]-Xr.f[3]) - s*(Xi.f[1]+Xi.f[3]); uout[2*Ncvec-1].f[1] = ci1;
  1445. ci2= 2*(Xi.f[3]-Xi.f[1]); uout[2*Ncvec-1].f[2] = ci2;
  1446. ci3=-s*(Xr.f[1]-Xr.f[3]) - s*(Xi.f[1]+Xi.f[3]); uout[2*Ncvec-1].f[3] = ci3;
  1447. }
  1448. void pffft_transform_internal(PFFFT_Setup *setup, const float *finput, float *foutput, v4sf *scratch,
  1449. pffft_direction_t direction, int ordered) {
  1450. int k, Ncvec = setup->Ncvec;
  1451. int nf_odd = (setup->ifac[1] & 1);
  1452. // temporary buffer is allocated on the stack if the scratch pointer is NULL
  1453. int stack_allocate = (scratch == 0 ? Ncvec*2 : 1);
  1454. VLA_ARRAY_ON_STACK(v4sf, scratch_on_stack, stack_allocate);
  1455. const v4sf *vinput = (const v4sf*)finput;
  1456. v4sf *voutput = (v4sf*)foutput;
  1457. v4sf *buff[2] = { voutput, scratch ? scratch : scratch_on_stack };
  1458. int ib = (nf_odd ^ ordered ? 1 : 0);
  1459. assert(VALIGNED(finput) && VALIGNED(foutput));
  1460. //assert(finput != foutput);
  1461. if (direction == PFFFT_FORWARD) {
  1462. ib = !ib;
  1463. if (setup->transform == PFFFT_REAL) {
  1464. ib = (rfftf1_ps(Ncvec*2, vinput, buff[ib], buff[!ib],
  1465. setup->twiddle, &setup->ifac[0]) == buff[0] ? 0 : 1);
  1466. pffft_real_finalize(Ncvec, buff[ib], buff[!ib], (v4sf*)setup->e);
  1467. } else {
  1468. v4sf *tmp = buff[ib];
  1469. for (k=0; k < Ncvec; ++k) {
  1470. UNINTERLEAVE2(vinput[k*2], vinput[k*2+1], tmp[k*2], tmp[k*2+1]);
  1471. }
  1472. ib = (cfftf1_ps(Ncvec, buff[ib], buff[!ib], buff[ib],
  1473. setup->twiddle, &setup->ifac[0], -1) == buff[0] ? 0 : 1);
  1474. pffft_cplx_finalize(Ncvec, buff[ib], buff[!ib], (v4sf*)setup->e);
  1475. }
  1476. if (ordered) {
  1477. pffft_zreorder(setup, (float*)buff[!ib], (float*)buff[ib], PFFFT_FORWARD);
  1478. } else ib = !ib;
  1479. } else {
  1480. if (vinput == buff[ib]) {
  1481. ib = !ib; // may happen when finput == foutput
  1482. }
  1483. if (ordered) {
  1484. pffft_zreorder(setup, (float*)vinput, (float*)buff[ib], PFFFT_BACKWARD);
  1485. vinput = buff[ib]; ib = !ib;
  1486. }
  1487. if (setup->transform == PFFFT_REAL) {
  1488. pffft_real_preprocess(Ncvec, vinput, buff[ib], (v4sf*)setup->e);
  1489. ib = (rfftb1_ps(Ncvec*2, buff[ib], buff[0], buff[1],
  1490. setup->twiddle, &setup->ifac[0]) == buff[0] ? 0 : 1);
  1491. } else {
  1492. pffft_cplx_preprocess(Ncvec, vinput, buff[ib], (v4sf*)setup->e);
  1493. ib = (cfftf1_ps(Ncvec, buff[ib], buff[0], buff[1],
  1494. setup->twiddle, &setup->ifac[0], +1) == buff[0] ? 0 : 1);
  1495. for (k=0; k < Ncvec; ++k) {
  1496. INTERLEAVE2(buff[ib][k*2], buff[ib][k*2+1], buff[ib][k*2], buff[ib][k*2+1]);
  1497. }
  1498. }
  1499. }
  1500. if (buff[ib] != voutput) {
  1501. /* extra copy required -- this situation should only happen when finput == foutput */
  1502. assert(finput==foutput);
  1503. for (k=0; k < Ncvec; ++k) {
  1504. v4sf a = buff[ib][2*k], b = buff[ib][2*k+1];
  1505. voutput[2*k] = a; voutput[2*k+1] = b;
  1506. }
  1507. ib = !ib;
  1508. }
  1509. assert(buff[ib] == voutput);
  1510. }
  1511. void pffft_zconvolve_accumulate(PFFFT_Setup *s, const float *a, const float *b, float *ab, float scaling) {
  1512. int Ncvec = s->Ncvec;
  1513. const v4sf * RESTRICT va = (const v4sf*)a;
  1514. const v4sf * RESTRICT vb = (const v4sf*)b;
  1515. v4sf * RESTRICT vab = (v4sf*)ab;
  1516. #ifdef __arm__
  1517. __builtin_prefetch(va);
  1518. __builtin_prefetch(vb);
  1519. __builtin_prefetch(vab);
  1520. __builtin_prefetch(va+2);
  1521. __builtin_prefetch(vb+2);
  1522. __builtin_prefetch(vab+2);
  1523. __builtin_prefetch(va+4);
  1524. __builtin_prefetch(vb+4);
  1525. __builtin_prefetch(vab+4);
  1526. __builtin_prefetch(va+6);
  1527. __builtin_prefetch(vb+6);
  1528. __builtin_prefetch(vab+6);
  1529. # ifndef __clang__
  1530. # define ZCONVOLVE_USING_INLINE_NEON_ASM
  1531. # endif
  1532. #endif
  1533. float ar, ai, br, bi, abr, abi;
  1534. #ifndef ZCONVOLVE_USING_INLINE_ASM
  1535. v4sf vscal = LD_PS1(scaling);
  1536. int i;
  1537. #endif
  1538. assert(VALIGNED(a) && VALIGNED(b) && VALIGNED(ab));
  1539. ar = ((v4sf_union*)va)[0].f[0];
  1540. ai = ((v4sf_union*)va)[1].f[0];
  1541. br = ((v4sf_union*)vb)[0].f[0];
  1542. bi = ((v4sf_union*)vb)[1].f[0];
  1543. abr = ((v4sf_union*)vab)[0].f[0];
  1544. abi = ((v4sf_union*)vab)[1].f[0];
  1545. #ifdef ZCONVOLVE_USING_INLINE_ASM // inline asm version, unfortunately miscompiled by clang 3.2, at least on ubuntu.. so this will be restricted to gcc
  1546. const float *a_ = a, *b_ = b; float *ab_ = ab;
  1547. int N = Ncvec;
  1548. asm volatile("mov r8, %2 \n"
  1549. "vdup.f32 q15, %4 \n"
  1550. "1: \n"
  1551. "pld [%0,#64] \n"
  1552. "pld [%1,#64] \n"
  1553. "pld [%2,#64] \n"
  1554. "pld [%0,#96] \n"
  1555. "pld [%1,#96] \n"
  1556. "pld [%2,#96] \n"
  1557. "vld1.f32 {q0,q1}, [%0,:128]! \n"
  1558. "vld1.f32 {q4,q5}, [%1,:128]! \n"
  1559. "vld1.f32 {q2,q3}, [%0,:128]! \n"
  1560. "vld1.f32 {q6,q7}, [%1,:128]! \n"
  1561. "vld1.f32 {q8,q9}, [r8,:128]! \n"
  1562. "vmul.f32 q10, q0, q4 \n"
  1563. "vmul.f32 q11, q0, q5 \n"
  1564. "vmul.f32 q12, q2, q6 \n"
  1565. "vmul.f32 q13, q2, q7 \n"
  1566. "vmls.f32 q10, q1, q5 \n"
  1567. "vmla.f32 q11, q1, q4 \n"
  1568. "vld1.f32 {q0,q1}, [r8,:128]! \n"
  1569. "vmls.f32 q12, q3, q7 \n"
  1570. "vmla.f32 q13, q3, q6 \n"
  1571. "vmla.f32 q8, q10, q15 \n"
  1572. "vmla.f32 q9, q11, q15 \n"
  1573. "vmla.f32 q0, q12, q15 \n"
  1574. "vmla.f32 q1, q13, q15 \n"
  1575. "vst1.f32 {q8,q9},[%2,:128]! \n"
  1576. "vst1.f32 {q0,q1},[%2,:128]! \n"
  1577. "subs %3, #2 \n"
  1578. "bne 1b \n"
  1579. : "+r"(a_), "+r"(b_), "+r"(ab_), "+r"(N) : "r"(scaling) : "r8", "q0","q1","q2","q3","q4","q5","q6","q7","q8","q9", "q10","q11","q12","q13","q15","memory");
  1580. #else // default routine, works fine for non-arm cpus with current compilers
  1581. for (i=0; i < Ncvec; i += 2) {
  1582. v4sf ar, ai, br, bi;
  1583. ar = va[2*i+0]; ai = va[2*i+1];
  1584. br = vb[2*i+0]; bi = vb[2*i+1];
  1585. VCPLXMUL(ar, ai, br, bi);
  1586. vab[2*i+0] = VMADD(ar, vscal, vab[2*i+0]);
  1587. vab[2*i+1] = VMADD(ai, vscal, vab[2*i+1]);
  1588. ar = va[2*i+2]; ai = va[2*i+3];
  1589. br = vb[2*i+2]; bi = vb[2*i+3];
  1590. VCPLXMUL(ar, ai, br, bi);
  1591. vab[2*i+2] = VMADD(ar, vscal, vab[2*i+2]);
  1592. vab[2*i+3] = VMADD(ai, vscal, vab[2*i+3]);
  1593. }
  1594. #endif
  1595. if (s->transform == PFFFT_REAL) {
  1596. ((v4sf_union*)vab)[0].f[0] = abr + ar*br*scaling;
  1597. ((v4sf_union*)vab)[1].f[0] = abi + ai*bi*scaling;
  1598. }
  1599. }
  1600. #else // defined(PFFFT_SIMD_DISABLE)
  1601. // standard routine using scalar floats, without SIMD stuff.
  1602. #define pffft_zreorder_nosimd pffft_zreorder
  1603. void pffft_zreorder_nosimd(PFFFT_Setup *setup, const float *in, float *out, pffft_direction_t direction) {
  1604. int k, N = setup->N;
  1605. if (setup->transform == PFFFT_COMPLEX) {
  1606. for (k=0; k < 2*N; ++k) out[k] = in[k];
  1607. return;
  1608. }
  1609. else if (direction == PFFFT_FORWARD) {
  1610. float x_N = in[N-1];
  1611. for (k=N-1; k > 1; --k) out[k] = in[k-1];
  1612. out[0] = in[0];
  1613. out[1] = x_N;
  1614. } else {
  1615. float x_N = in[1];
  1616. for (k=1; k < N-1; ++k) out[k] = in[k+1];
  1617. out[0] = in[0];
  1618. out[N-1] = x_N;
  1619. }
  1620. }
  1621. #define pffft_transform_internal_nosimd pffft_transform_internal
  1622. void pffft_transform_internal_nosimd(PFFFT_Setup *setup, const float *input, float *output, float *scratch,
  1623. pffft_direction_t direction, int ordered) {
  1624. int Ncvec = setup->Ncvec;
  1625. int nf_odd = (setup->ifac[1] & 1);
  1626. // temporary buffer is allocated on the stack if the scratch pointer is NULL
  1627. int stack_allocate = (scratch == 0 ? Ncvec*2 : 1);
  1628. VLA_ARRAY_ON_STACK(v4sf, scratch_on_stack, stack_allocate);
  1629. float *buff[2];
  1630. int ib;
  1631. if (scratch == 0) scratch = scratch_on_stack;
  1632. buff[0] = output; buff[1] = scratch;
  1633. if (setup->transform == PFFFT_COMPLEX) ordered = 0; // it is always ordered.
  1634. ib = (nf_odd ^ ordered ? 1 : 0);
  1635. if (direction == PFFFT_FORWARD) {
  1636. if (setup->transform == PFFFT_REAL) {
  1637. ib = (rfftf1_ps(Ncvec*2, input, buff[ib], buff[!ib],
  1638. setup->twiddle, &setup->ifac[0]) == buff[0] ? 0 : 1);
  1639. } else {
  1640. ib = (cfftf1_ps(Ncvec, input, buff[ib], buff[!ib],
  1641. setup->twiddle, &setup->ifac[0], -1) == buff[0] ? 0 : 1);
  1642. }
  1643. if (ordered) {
  1644. pffft_zreorder(setup, buff[ib], buff[!ib], PFFFT_FORWARD); ib = !ib;
  1645. }
  1646. } else {
  1647. if (input == buff[ib]) {
  1648. ib = !ib; // may happen when finput == foutput
  1649. }
  1650. if (ordered) {
  1651. pffft_zreorder(setup, input, buff[!ib], PFFFT_BACKWARD);
  1652. input = buff[!ib];
  1653. }
  1654. if (setup->transform == PFFFT_REAL) {
  1655. ib = (rfftb1_ps(Ncvec*2, input, buff[ib], buff[!ib],
  1656. setup->twiddle, &setup->ifac[0]) == buff[0] ? 0 : 1);
  1657. } else {
  1658. ib = (cfftf1_ps(Ncvec, input, buff[ib], buff[!ib],
  1659. setup->twiddle, &setup->ifac[0], +1) == buff[0] ? 0 : 1);
  1660. }
  1661. }
  1662. if (buff[ib] != output) {
  1663. int k;
  1664. // extra copy required -- this situation should happens only when finput == foutput
  1665. assert(input==output);
  1666. for (k=0; k < Ncvec; ++k) {
  1667. float a = buff[ib][2*k], b = buff[ib][2*k+1];
  1668. output[2*k] = a; output[2*k+1] = b;
  1669. }
  1670. ib = !ib;
  1671. }
  1672. assert(buff[ib] == output);
  1673. }
  1674. #define pffft_zconvolve_accumulate_nosimd pffft_zconvolve_accumulate
  1675. void pffft_zconvolve_accumulate_nosimd(PFFFT_Setup *s, const float *a, const float *b,
  1676. float *ab, float scaling) {
  1677. int i, Ncvec = s->Ncvec;
  1678. if (s->transform == PFFFT_REAL) {
  1679. // take care of the fftpack ordering
  1680. ab[0] += a[0]*b[0]*scaling;
  1681. ab[2*Ncvec-1] += a[2*Ncvec-1]*b[2*Ncvec-1]*scaling;
  1682. ++ab; ++a; ++b; --Ncvec;
  1683. }
  1684. for (i=0; i < Ncvec; ++i) {
  1685. float ar, ai, br, bi;
  1686. ar = a[2*i+0]; ai = a[2*i+1];
  1687. br = b[2*i+0]; bi = b[2*i+1];
  1688. VCPLXMUL(ar, ai, br, bi);
  1689. ab[2*i+0] += ar*scaling;
  1690. ab[2*i+1] += ai*scaling;
  1691. }
  1692. }
  1693. #endif // defined(PFFFT_SIMD_DISABLE)
  1694. void pffft_transform(PFFFT_Setup *setup, const float *input, float *output, float *work, pffft_direction_t direction) {
  1695. pffft_transform_internal(setup, input, output, (v4sf*)work, direction, 0);
  1696. }
  1697. void pffft_transform_ordered(PFFFT_Setup *setup, const float *input, float *output, float *work, pffft_direction_t direction) {
  1698. pffft_transform_internal(setup, input, output, (v4sf*)work, direction, 1);
  1699. }