#include "plugin.hpp" #include "Common.hpp" static float expDelta(float delta, float tau) { float lin = sgn(delta) * 10.f / tau; float exp = M_E * delta / tau; return crossfade(lin, exp, 0.90f); } struct Percall : Module { enum ParamIds { ENUMS(VOL_PARAMS, 4), ENUMS(DECAY_PARAMS, 4), ENUMS(CHOKE_PARAMS, 2), NUM_PARAMS }; enum InputIds { ENUMS(CH_INPUTS, 4), STRENGTH_INPUT, ENUMS(TRIG_INPUTS, 4), ENUMS(CV_INPUTS, 4), NUM_INPUTS }; enum OutputIds { ENUMS(CH_OUTPUTS, 4), ENUMS(ENV_OUTPUTS, 4), NUM_OUTPUTS }; enum LightIds { ENUMS(LEDS, 4), NUM_LIGHTS }; ADEnvelope envs[4]; float gains[4] = {}; float strength = 1.0f; dsp::SchmittTrigger trigger[4]; dsp::ClockDivider cvDivider; dsp::ClockDivider lightDivider; const int LAST_CHANNEL_ID = 3; const float attackTime = 1.5e-3; const float minDecayTime = 4.5e-3; const float maxDecayTime = 4.f; Percall() { config(NUM_PARAMS, NUM_INPUTS, NUM_OUTPUTS, NUM_LIGHTS); for (int i = 0; i < 4; i++) { configParam(VOL_PARAMS + i, 0.f, 1.f, 1.f, "Ch " + std::to_string(i + 1) + " level", "%", 0, 100); configParam(DECAY_PARAMS + i, 0.f, 1.f, 0.f, "Ch " + std::to_string(i + 1) + " decay time"); envs[i].attackTime = attackTime; envs[i].attackShape = 0.5f; envs[i].decayShape = 3.0f; } for (int i = 0; i < 2; i++) { std::string description = "Choke " + std::to_string(2 * i + 1) + " to " + std::to_string(2 * i + 2); configParam(CHOKE_PARAMS + i, 0.f, 1.f, 0.f, description); } cvDivider.setDivision(16); lightDivider.setDivision(128); } void process(const ProcessArgs& args) override { strength = 1.0f; if (inputs[STRENGTH_INPUT].isConnected()) { strength = clamp(inputs[STRENGTH_INPUT].getVoltage() / 10.0f, 0.0f, 1.0f); } // only calculate gains/decays every 16 samples if (cvDivider.process()) { for (int i = 0; i < 4; i++) { gains[i] = std::pow(params[VOL_PARAMS + i].getValue(), 2.f) * strength; float fallCv = inputs[CV_INPUTS + i].getVoltage() + params[DECAY_PARAMS + i].getValue() * 10.f; envs[i].decayTime = minDecayTime * std::pow(2.0, clamp(fallCv, 0.0f, 10.0f)); } } simd::float_4 mix[4] = {}; int maxChannels = 1; // Mixer channels for (int i = 0; i < 4; i++) { if (trigger[i].process(rescale(inputs[TRIG_INPUTS + i].getVoltage(), 0.1f, 2.f, 0.f, 1.f))) { envs[i].stage = ADEnvelope::STAGE_ATTACK; } // if choke is enabled, and current channel is odd and left channel is in attack if ((i % 2) && params[CHOKE_PARAMS + i / 2].getValue() && envs[i - 1].stage == ADEnvelope::STAGE_ATTACK) { // TODO: is there a more graceful way to choke, e.g. rapid envelope? // TODO: this will just silence it instantly, maybe switch to STAGE_DECAY and modify fall time envs[i].stage = ADEnvelope::STAGE_OFF; } envs[i].process(args.sampleTime); int channels = 1; simd::float_4 in[4] = {}; bool inputIsConnected = inputs[CH_INPUTS + i].isConnected(); bool inputIsNormed = !inputIsConnected && (i % 2) && inputs[CH_INPUTS + i - 1].isConnected(); if ((inputIsConnected || inputIsNormed)) { int channel_to_read_from = inputIsNormed ? CH_INPUTS + i - 1 : CH_INPUTS + i; channels = inputs[channel_to_read_from].getChannels(); maxChannels = std::max(maxChannels, channels); // only process input audio if envelope is active if (envs[i].stage != ADEnvelope::STAGE_OFF) { float gain = gains[i] * envs[i].env; for (int c = 0; c < channels; c += 4) { in[c / 4] = simd::float_4::load(inputs[channel_to_read_from].getVoltages(c)) * gain; } } } if (i != LAST_CHANNEL_ID) { // if connected, output via the jack (and don't add to mix) if (outputs[CH_OUTPUTS + i].isConnected()) { outputs[CH_OUTPUTS + i].setChannels(channels); for (int c = 0; c < channels; c += 4) { in[c / 4].store(outputs[CH_OUTPUTS + i].getVoltages(c)); } } else { // else add to mix for (int c = 0; c < channels; c += 4) { mix[c / 4] += in[c / 4]; } } } // otherwise if it is the final channel and it's wired in else if (outputs[CH_OUTPUTS + i].isConnected()) { outputs[CH_OUTPUTS + i].setChannels(maxChannels); // last channel must always go into mix for (int c = 0; c < channels; c += 4) { mix[c / 4] += in[c / 4]; } for (int c = 0; c < maxChannels; c += 4) { mix[c / 4].store(outputs[CH_OUTPUTS + i].getVoltages(c)); } } // set env output if (outputs[ENV_OUTPUTS + i].isConnected()) { outputs[ENV_OUTPUTS + i].setVoltage(10.f * strength * envs[i].env); } } if (lightDivider.process()) { for (int i = 0; i < 4; i++) { lights[LEDS + i].setBrightness(envs[i].env); } } } }; struct PercallWidget : ModuleWidget { PercallWidget(Percall* module) { setModule(module); setPanel(APP->window->loadSvg(asset::plugin(pluginInstance, "res/Percall.svg"))); addChild(createWidget(Vec(RACK_GRID_WIDTH, 0))); addChild(createWidget(Vec(box.size.x - 2 * RACK_GRID_WIDTH, 0))); addChild(createWidget(Vec(RACK_GRID_WIDTH, RACK_GRID_HEIGHT - RACK_GRID_WIDTH))); addChild(createWidget(Vec(box.size.x - 2 * RACK_GRID_WIDTH, RACK_GRID_HEIGHT - RACK_GRID_WIDTH))); addParam(createParamCentered(mm2px(Vec(8.003, 41.196)), module, Percall::VOL_PARAMS + 0)); addParam(createParamCentered(mm2px(Vec(22.829, 41.196)), module, Percall::VOL_PARAMS + 1)); addParam(createParamCentered(mm2px(Vec(37.655, 41.196)), module, Percall::VOL_PARAMS + 2)); addParam(createParamCentered(mm2px(Vec(52.481, 41.196)), module, Percall::VOL_PARAMS + 3)); addParam(createParam(mm2px(Vec(5.385, 52.476)), module, Percall::DECAY_PARAMS + 0)); addParam(createParam(mm2px(Vec(20.728, 52.476)), module, Percall::DECAY_PARAMS + 1)); addParam(createParam(mm2px(Vec(35.543, 52.476)), module, Percall::DECAY_PARAMS + 2)); addParam(createParam(mm2px(Vec(50.357, 52.476)), module, Percall::DECAY_PARAMS + 3)); addParam(createParam(mm2px(Vec(13.365, 58.672)), module, Percall::CHOKE_PARAMS + 0)); addParam(createParam(mm2px(Vec(42.993, 58.672)), module, Percall::CHOKE_PARAMS + 1)); addInput(createInputCentered(mm2px(Vec(7.173, 12.894)), module, Percall::CH_INPUTS + 0)); addInput(createInputCentered(mm2px(Vec(20.335, 12.894)), module, Percall::CH_INPUTS + 1)); addInput(createInputCentered(mm2px(Vec(40.347, 12.894)), module, Percall::CH_INPUTS + 2)); addInput(createInputCentered(mm2px(Vec(53.492, 12.894)), module, Percall::CH_INPUTS + 3)); addInput(createInputCentered(mm2px(Vec(30.341, 18.236)), module, Percall::STRENGTH_INPUT)); addInput(createInputCentered(mm2px(Vec(7.173, 24.834)), module, Percall::TRIG_INPUTS + 0)); addInput(createInputCentered(mm2px(Vec(18.547, 23.904)), module, Percall::TRIG_INPUTS + 1)); addInput(createInputCentered(mm2px(Vec(42.218, 23.904)), module, Percall::TRIG_INPUTS + 2)); addInput(createInputCentered(mm2px(Vec(53.453, 24.834)), module, Percall::TRIG_INPUTS + 3)); addInput(createInputCentered(mm2px(Vec(5.093, 101.799)), module, Percall::CV_INPUTS + 0)); addInput(createInputCentered(mm2px(Vec(15.22, 101.799)), module, Percall::CV_INPUTS + 1)); addInput(createInputCentered(mm2px(Vec(25.347, 101.799)), module, Percall::CV_INPUTS + 2)); addInput(createInputCentered(mm2px(Vec(35.474, 101.799)), module, Percall::CV_INPUTS + 3)); addOutput(createOutputCentered(mm2px(Vec(45.541, 101.699)), module, Percall::CH_OUTPUTS + 0)); addOutput(createOutputCentered(mm2px(Vec(55.624, 101.699)), module, Percall::CH_OUTPUTS + 1)); addOutput(createOutputCentered(mm2px(Vec(45.541, 113.696)), module, Percall::CH_OUTPUTS + 2)); addOutput(createOutputCentered(mm2px(Vec(55.624, 113.696)), module, Percall::CH_OUTPUTS + 3)); addOutput(createOutputCentered(mm2px(Vec(5.093, 113.74)), module, Percall::ENV_OUTPUTS + 0)); addOutput(createOutputCentered(mm2px(Vec(15.22, 113.74)), module, Percall::ENV_OUTPUTS + 1)); addOutput(createOutputCentered(mm2px(Vec(25.347, 113.74)), module, Percall::ENV_OUTPUTS + 2)); addOutput(createOutputCentered(mm2px(Vec(35.474, 113.74)), module, Percall::ENV_OUTPUTS + 3)); addChild(createLightCentered>(mm2px(Vec(8.107, 49.221)), module, Percall::LEDS + 0)); addChild(createLightCentered>(mm2px(Vec(22.934, 49.221)), module, Percall::LEDS + 1)); addChild(createLightCentered>(mm2px(Vec(37.762, 49.221)), module, Percall::LEDS + 2)); addChild(createLightCentered>(mm2px(Vec(52.589, 49.221)), module, Percall::LEDS + 3)); } }; Model* modelPercall = createModel("Percall");